Andreas Kogler - CV

Education:

Master of Scienceandreaskogler.com

I am a security researcher at the Institute of Applied Information Processing and Communications at Graz University of Technology. I focus on software-based power analysis, software-based fault attacks & defenses, microarchitectural attacks & defenses, and trusted execution environments like Intel SGX or AMD SEV.

Graz University of Technology	Ph.D. pass with distinction.
2020 - 2024	▶ in Computer Science.
	Publications: see below
	Thesis: Colliding Worlds: Exploiting Physical Properties from Software
Graz University of Technology	Master of Science pass with distinction.
2017 - 2020	▶ in Information and Computer Engineering.
	Major: Measurement Signal Processing and Control Systems
	Minor: Secure and Correct Systems
	Thesis: Software-based Power Side-Channel Attacks
Graz University of Technology	Bachelor of Science pass with distinction.
2013 - 2017	▶ in Information and Computer Engineering.
Work experience:	
Apple	Vulnerability Researcher and Security Engineering
since 2024	• working as vulnerability researcher and security engineer.
KS Engineers	Software and Hardware Development
2014 - 2020	▶ for real-time operating systems, automotive measurement equipment, and high performance optimization on Intel CPUs.
Graz University of Technology	Project Assistant
2020, 2 months	• at the Institute of Applied Information Processing and Communications.
Skills:	
Languages	▶ German native English fluent

Languages	▶ German native English fluent
Programming Languages	\blacktriangleright x86 Assembly ARM Assembly <code>basics</code> C C++ Rust Python VHDL Verilog <code>basics</code>
Organization and Documentation	▶ Git Gitlab Jira AccuRev LAT_EX
Project Experience	\blacktriangleright Linux kernel KVM Intel SGX AMD SEV LLVM compiler infrastructure
Tooling Experience	▶ Large Scale Data Analysis Fuzzing <i>basics</i>
Fields of Expertise	\blacktriangleright SW Power Analysis SW Fault Attacks Microarchitectural Side Channels TEEs

Selected Publications:

USENIX Security 2024	 CacheWarp: Software-based Fault Injection using Selective State Reset AMD-SEV could be attacked by exploiting cache invalidation instructions to <i>forget</i> data within the caches. Ruiyi Zhang, Lukas Gerlach, Daniel Weber, Lorenz Hetterich, Youheng Lü, Andreas Kogler, Michael Schwarz
USENIX Security 2023	 Collide+Power: Leaking Inaccessible Data with Software-based Power Side Channels Software-based power side channels can leak arbitrary general-purpose data similar to Meltdown and MDS. Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Martin Schwarzl, Michael Schwarz, Daniel Gruss, Stefan Mangard
IEEE S&P 2023	 CSI: Rowhammer - Cryptographic Security and Integrity against Rowhammer > Replacing error-correcting codes allows for a hardware-software co-design with great flexibility for system security. Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder, Moritz Lipp, Daniel Gruss
USENIX Securtiy 2022	 ÆPIC Leak: Architecturally Leaking Uninitialized Data from the Microarchitecture The APIC MMIO range architecturally exposes data traveling over a microarchitectural decoupling buffer. Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, Michael Schwarz
USENIX Securtiy 2022	 Half-Double: Hammering From the Next Row Over Rowhammer can be cascaded and extended beyond direct neighbors even if hardware mitigations are in place. Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, Daniel Gruss
IEEE S&P 2020	 PLATYPUS: Software-based Power Side-Channel Attacks on x86 Integrated power interfaces enable traditional power analysis from software to leak cryptographic keys. Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio Canella, Daniel Gruss

Additional Publications:

NDSS 2025	 Power-Related Side-Channel Attacks using the Android Sensor Framework Sensors expose power-related signals due to physical coupling that can be exploited in power analysis attacks. Mathias Oberhuber, Martin Unterguggenberger, Lukas Maar, Andreas Kogler, Stefan Mangard
NDSS 2025	 A Systematic Evaluation of Novel and Existing Cache Side Channels The cldemote instruction can be used as replacement for clflush and enhance traditional attacks. Fabian Rauscher, Carina Fiedler, Andreas Kogler, Daniel Gruss
Financial Crypto 2024	 Remote Scheduler Contention Attacks Scheduler contention attacks are applicable from restricted environments like JavaScript. Stefan Gast, Jonas Juffinger, Lukas Maar, Christoph Royer, Andreas Kogler, Daniel Gruss
NDSS 2024	 IdleLeak: Exploiting Idle State Side Effects for Information Leakage CPU idle states get preempted due to certain systems activities and can be used for side-channel attacks. Fabian Rauscher, Andreas Kogler, Jonas Juffinger, Daniel Gruss
IEEE/IFIP DSN	PT-Guard: Integrity-Protected Page Tables to Defend Against Breakthrough Rowhammer Attacks
2023	▶ Free bits within a page table entry can store integrity information to prevent bitflips and Rowhammer attacks. Anish Saxena, Gururaj Saileshwar, Jonas Juffinger, Andreas Kogler, Daniel Gruss, Moinuddin Qureshi
USENIX Securtiy 2023	 Side-Channel Attacks on Optane Persistent Memory ▶ The Optane memory technology deploys multiple optimizations and buffers that expose side channels. Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, Andreas Kogler, Daniel Gruss, Samira Khan

IEEE S&P 2023	 SQUIP: Exploiting the Scheduler Queue Contention Side Channel The queues used to distribute instructions within AMD CPUs expose side channels.
	Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar, Andreas Kogler , Simone Franza, Markus Köstl, Daniel Gruss
IEEE S&P 2022	 Finding and Exploiting CPU Features using MSR Templating Undocumented interfaces change the behavior of certain instructions, enabling potential attacks and defenses.
2022	Andreas Kogler, Daniel Weber, Martin Haubenwallner, Moritz Lipp, Daniel Gruss, Michael Schwarz
USENIX Securtiy 2022	 Minefield: A Software-only Protection for SGX Enclaves against DVFS Attacks SGX can be probabilistically shielded against software-based undervolting attacks by adding trap instructions. Andreas Kogler, Daniel Gruss, Michael Schwarz
USENIX Security	Repurposing Segmentation as a Practical LVI-NULL Mitigation in SGX
2022	▶ Segmentation registers limit the attack surface of LVI-NULL in SGX and can be used with our compiler extensions. Lukas Giner, Andreas Kogler, Claudio Canella, Michael Schwarz, Daniel Gruss
arXiv	Domain Page-Table Isolation
2021	 Additional memory segregation during syscall invocation drastically limits the attack surface of an attacker. Claudio Canella, Andreas Kogler, Lukas Giner, Daniel Gruss, Michael Schwarz
ESORICS	Robust and Scalable Process Isolation Against Spectre in the Cloud
2021	 Spectre attacks can be probabilistically detected and isolated in distinct processes to prevent data leakage. Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda, Thomas Schuster, Daniel

Program Committees:

PC Member 2024	USENIX Security 2025 ▶ USENIX Security Symposium
PC Member 2024	AsiaCCS 2025 → ACM Asia Conference on Computer and Communications Security
PC Member 2024	SECURWARE 2024▶ International Conference on Emerging Security Information, Systems and Technologies
PC Member 2023	AsiaCCS 2024 → ACM Asia Conference on Computer and Communications Security
PC Member 2023	SECURWARE 2023▶ International Conference on Emerging Security Information, Systems and Technologies
PC Member 2022	DIMVA 2023▶ Detection of Intrusions and Malware & Vulnerability Assessment
PC Member 2022	SECURWARE 2022International Conference on Emerging Security Information, Systems and Technologies
Awards:	
CVE	CVE-2023-20592

CVE	C V E-2023-20392
2023	▶ CacheWarp: Software-based Fault Injection using Selective State Reset
CVE	CVE-2023-20583
2023	▶ Collide+Power: Leaking Inaccessible Data with Software-based Power Side Channels

Finalist	CSAW Applied Research Competition
2022	▶ ÆPIC Leak and Half-Double
Award	Pwnie Award for Best Desktop Bug
2022	\blacktriangleright ÆPIC Leak: Architecturally Leaking Uninitialized Data from the Microarchitecture
CVE	CVE-2022-21233
2022	\blacktriangleright ÆPIC Leak: Architecturally Leaking Uninitialized Data from the Microarchitecture
CVE	CVE-2021-46778
2022	▶ SQUIP: Exploiting the Scheduler Queue Contention Side Channel
Award	IAIK Student Research Excellence Award
2022	\blacktriangleright PLATYPUS: Software-based Power Side-Channel Attacks on x86
Award	Förderpreis des Forum Technik und Gesellschaft (3rd place)
2021	▶ Master's Thesis: Software-based Power Side-Channel Attacks
CVE	CVE-2020-8694
2020	\blacktriangleright PLATYPUS: Software-based Power Side-Channel Attacks on x86
CVE	CVE-2020-8695
2020	▶ PLATYPUS: Software-based Power Side-Channel Attacks on x86

Presentations:

Talk	Hardwear.io Netherlands
2024	▶ Looking Back at 10 Years of Rowhammer Exploits
Talk	Blackhat Europe
2023	\blacktriangleright Collide+Power: The Evolution of Software-based Power Side-Channels Attacks
Talk	Blackhat Europe
2022	▶ CSI:Rowhammer: Closing the Case of Half-Double and Beyond
Talk	Blackhat USA
2022	▶ AEPIC Leak: Architecturally Leaking Uninitialized Data from the Microarchitecture
Talk	Blackhat Asia
2022	▶ Dynamic Process Isolation
Lecture	Invited Lecture @ Ben-Gurion University of the Negev
2021	▶ PLATYPUS: Software-based Power Side-Channel Attacks on x86
Talk	Remote Chaos Experience (CCC)
2020	▶ Attacking CPUs with Power Side Channels from Software: Warum leaked hier Strom?