
A Systematic Evaluation of Novel and Existing
Cache Side Channels

Fabian Rauscher
Graz University of Technology
fabian.rauscher@iaik.tugraz.at

Carina Fiedler
Graz University of Technology
carina.fiedler@student.tugraz.at

Andreas Kogler
Graz University of Technology
andreas.kogler.0x@gmail.com

Daniel Gruss
Graz University of Technology

daniel.gruss@iaik.tugraz.at

Abstract—CPU caches are among the most widely studied
side-channel targets, with Prime+Probe and Flush+Reload being
the most prominent techniques. These generic cache attack
techniques can leak cryptographic keys, user input, and are a
building block of many microarchitectural attacks.

In this paper, we present the first systematic evaluation using
9 characteristics of the 4 most relevant cache attacks, Flush+
Reload, Flush+Flush, Evict+Reload, and Prime+Probe, as well as
three new attacks that we introduce: Demote+Reload, Demote+
Demote, and DemoteContention. We evaluate hit-miss margins,
temporal precision, spatial precision, topological scope, attack
time, blind spot length, channel capacity, noise resilience, and
detectability on recent Intel microarchitectures. Demote+Reload
and Demote+Demote perform similar to previous attacks and
slightly better in some cases, e.g., Demote+Reload has a 60.7%
smaller blind spot than Flush+Reload. With 15.48Mbit/s, De-
mote+Reload has a 64.3% higher channel capacity than Flush+
Reload. We also compare all attacks in an AES T-table attack and
compare Demote+Reload and Flush+Reload in an inter-keystroke
timing attack. Beyond the scope of the prior attack techniques,
we demonstrate a KASLR break with Demote+Demote and
the amplification of power side-channel leakage with Demote+
Reload. Finally, Sapphire Rapids and Emerald Rapids CPUs use
a non-inclusive L3 cache, effectively limiting eviction-based cross-
core attacks, e.g., Prime+Probe and Evict+Reload, to rare cases
where the victim’s activity reaches the L3 cache. Hence, we show
that in a cross-core attack, DemoteContention can be used as a
reliable alternative to Prime+Probe and Evict+Reload that does
not require reverse-engineering of addressing functions and cache
replacement policy.

I. INTRODUCTION

Modern CPUs have multiple cache levels with lower laten-
cies and capacities in lower levels, closer to the execution core,
and higher latencies and capacities at higher levels, further
away from the core. Cache performance is so crucial that
disabling caching on commodity systems effectively slows
them down by multiple orders of magnitude. Caches cannot
buffer all memory, meaning that some memory locations will
be buffered and fast, whereas others have higher access times,
introducing the problem of cache side-channel attacks: Which
data is cached, is decided based on what was recently used,

is frequently used, as well as what is predicted to be used
in the near future. Hence, cache side-channel attacks measure
the timing to then infer which memory locations were recently
used [84], [26], when memory locations are used [26], [77],
and which memory locations are predicted to be used [22],
[42]. Side-channel attacks then use this information to infer the
actual secrets that led to these memory accesses or predictions.

Several generic cache attack techniques have been discussed
in the literature, with the most prominent examples being
Prime+Probe [53] and Flush+Reload [84]. Flush+Flush [24]
and Evict+Reload [26] are variations of Flush+Reload that
can be beneficial in some use cases [43], [71]. A promising
defense against Prime+Probe is the concept of randomized
secure caches, minimizing [81], [57], [61] or even eliminat-
ing [19] the chance of priming and probing the cache suc-
cessfully. However, flush-based attacks are typically excluded,
i.e., Flush+Reload and Flush+Flush, and instead, propose to
disable clflush [81]. Other works try to mitigate flush-
based attacks through detection [11], [27], [24]. Instead of
introducing a secure cache, Intel decided to move to a non-
inclusive L3 cache with their recent Sapphire Rapids microar-
chitecture. The non-inclusive L3 cache provides no guarantees
on inclusiveness towards lower levels, effectively mitigating
the possibility to evict cache lines from the private L1 and
L2 caches of other cores. Hence, eviction-based cross-core
attacks, e.g., Prime+Probe and Evict+Reload, are not possible
anymore unless the victim’s own activity repeatedly leads to
data placement in the L3 cache. Furthermore, the addressing
functions and replacement policy for Sapphire Rapids have not
been reverse-engineered yet, and even with these steps, the
input to these functions is physical addresses, i.e., privileged
information typically unavailable to an attacker.

In this paper, we present the first systematic evaluation using
9 characteristics of the 4 most relevant cache attacks, Flush+
Reload, Flush+Flush, Evict+Reload, and Prime+Probe, as well
as three new attacks that we introduce: Demote+Reload,
Demote+Demote, and DemoteContention. We evaluate hit-
miss margins, temporal precision, spatial precision, topological
scope, attack time, blind spot length, channel capacity, noise
resilience, and detectability. In a comprehensive comparison,
we show that our new attacks, Demote+Reload and Demote+
Demote, perform better on some and worse on other character-
istics but yield overall a similar attack performance as known
attacks. Demote+Reload has a 60.7% smaller blind spot than

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230253
www.ndss-symposium.org

Flush+Reload, and Demote+Demote has the lowest attack
runtime (185.8 cycles). Our blind-spot evaluation also reveals
that Flush+Flush and Demote+Demote have no significant
blind spot, whereas other attacks have considerable blind-spot
lengths compared to their attack runtime, of up to 90.1%. With
a true capacity of 15.48Mbit/s, Demote+Reload has a 64.3%
higher channel capacity than Flush+Reload, making it slightly
faster than the previously fastest CPU covert channel [60].
Similar to Flush+Flush, Demote+Demote doesn’t even trigger
L1 or L2 misses, making it less visible to state-of-the-art
detection mechanisms [11], [27], [24].

To evaluate all attacks further, we mount multiple attacks
as a benchmark: We compare them in an AES T-table attack,
showing that Demote+Reload outperforms the other attacks.
Furthermore, we compare Demote+Reload and Flush+Reload
in an inter-keystroke timing attack. Beyond the scope of
the prior attack techniques, we demonstrate a KASLR (ker-
nel address-space layout randomization) break with Demote+
Demote, exploiting that cldemote also leaks information
about the validity of kernel address mappings. Finally, we
show how Collide+Power-style power side-channel leakage
can be amplified with Demote+Reload, as the expensive and
noisy cache eviction and cache reloading are avoided as
compared to Flush+Reload.

Our analysis also revealed that the non-inclusive L3 cache of
the recent Sapphire Rapids microarchitecture practically poses
a significant restriction of what cross-core cache attacks can
observe. Our results show that Flush+Reload and Flush+Flush
are unaffected as they rely on the clflush instruction that
evicts a cache line from all caches. However, attacks relying on
eviction or cldemote do not lead to an eviction of the cache
line from the other core’s private cache. Hence, without the
clflush instruction, an attacker can only spy on cache lines
that the victim itself brings into the L3 cache. Based on this in-
sight, we present a new cross-core attack, DemoteContention.
DemoteContention does not rely on reverse-engineering of
addressing functions or cache replacement policy for eviction,
neither of which has been reverse-engineered for Sapphire
Rapids yet. As DemoteContention does not rely on shared
memory between attacker and victim, it can be used as
already as a reliable alternative to Prime+Probe and Evict+
Reload on the non-inclusive L3 cache, even without privileged
information about physical addresses.

In summary, we make the following contributions:
1) We provide the first systematic evaluation of 9 charac-

teristics (hit-miss margins, temporal and spatial precision,
topological scope, attack time, blind spot length, channel
capacity, noise resilience, and detectability) of the 4 most
relevant cache attacks, Flush+Reload, Flush+Flush, Evict+
Reload, and Prime+Probe.

2) We present three novel cache attack techniques, Demote+
Reload and Demote+Demote for same-core scenarios with
shared memory, and DemoteContention, for cross-core sce-
narios without shared memory and physical addresses. We
include all three new attacks in our systematic evaluation.

3) We compare all attacks in an AES T-tables attack as a
benchmark as well as Demote+Reload and Flush+Reload
in an inter-keystroke timing attack.

4) We show that cldemote leaks information beyond the
prior generic techniques: We build a KASLR break with
Demote+Demote, and show how Collide+Power leakage
can be amplified with Demote+Reload.

Outline. Section II provides background. Section III presents
our novel attacks. Section IV presents a systematic evalua-
tion of state-of-the-art cache side-channel attacks. Section V
presents Demote+Reload case studies. We discuss mitigations
in Section VI and conclude in Section VII.
Responsible Disclosure. We responsibly disclosed our find-
ings to Intel (November 28, 2023). Intel concluded the re-
sponsible disclosure process and did not consider our findings
a vulnerability.

II. BACKGROUND

In this section, we discuss caches, the state-of-the-art in
cache side-channel attacks as well as mitigation techniques.

A. CPU Caches

CPU caches are small and fast memories the CPU uses to
store copies of data from main memory to hide the latency
of main memory accesses. Modern CPUs have different levels
of cache, typically three, varying in size and latency: the L1
cache is the smallest and fastest, while the L3 cache, also
called last-level cache, is larger and slower. Modern CPUs are
set-associative, i.e., a cache line is stored in a fixed set, as
determined by either its virtual or physical address. The last-
level cache is physically indexed and shared across cores of the
same CPU. On many CPUs from the last decade, the L3 cache
was inclusive with respect to L1 and L2, meaning that all data
stored in L1 and L2 is also stored in the last-level cache. To
maintain this property, every line evicted from the last-level
cache is also evicted from L1 and L2 caches. Some Intel CPUs
also have an L4 cache, which acts as a victim cache, shared
across all cores. However, recent Intel Xeon CPUs, e.g., Xeon
Silver 4410T, and some large Intel Core CPUs have a non-
inclusive L3 but no L4 cache. In a non-inclusive L3, cache
lines present in the L1 and L2 of CPU cores do not have to
be present in the L3. However, the L2 in turn is now inclusive
with respect to the L1, whereas the L3 now acts as a victim
cache. The last-level cache, though shared across cores, is also
divided into slices. The undocumented hash function that maps
physical addresses to slices in Intel CPUs has been reverse-
engineered for older CPUs [48], [85], [30], however, it has not
yet been reverse-engineered for Intel Sapphire Rapids CPUs.

B. Cache Attacks

Cache attacks exploit timing differences between cached
and non-cached memory. Access-driven attacks are most pow-
erful, where an attacker monitors its own activity to infer
activity of a victim, e.g., which cache lines or cache sets
the victim accessed. Flush+Reload [84], Evict+Reload [26]
and Flush+Flush [24] all use shared memory, which is then

2

shared in the cache, to infer whether the victim accessed a
specific cache line. The attacker evicts data either by using
the clflush instruction (Flush+Reload and Flush+Flush),
or accessing congruent addresses, i.e., cache lines that belong
to the same cache set (Evict+Reload). These attacks have a
very fine granularity (i.e., a 64-byte cache line) and are most
relevant in native environments.

An access-driven attack that does not rely on shared memory
and, hence, is widely applicable, is Prime+Probe [53], [46],
[33]. As it does not share a cache line with the victim,
it cannot use the clflush instruction but instead has to
access congruent addresses to evict data from the victim. The
granularity of the attack is noisier and coarser as an attacker
only learns which cache set was accessed. Besides noise from
other processes, replacement policies make it hard to guarantee
eviction from a cache set [23]. Disselkoen et al. [15] and
Gruss et al. [25] use TSX transactions to detect victim-induced
evictions instead of the probe step as a variation of the attack
(Prime+Abort). Purnal et al. [57] proposed a variant optimized
for randomized secure caches called Prime+Prune+Probe and
a variant that reduces the observer effect [58] (blind spot) by
exploiting the specific replacement policy of the cache and
allowing for a single cache access of the victim to be detected
with a single cache access by the attacker. It is important to
note that these attacks are specializations of Prime+Probe and,
beyond the generic attack principle, exploit specific behaviors
of the caches and CPUs they attack.

C. Mitigating Cache Attacks

Eliminating resource sharing in the cache can mitigate
attacks [55] at substantially increased costs. Abandoning
technologies like SMT (Simultaneous Multi-Threading, which
shares L1 and L2 caches) would reduce performance by 25%
to 35% [76]. Consequently, the trend is going in the other
direction, towards more sharing on all hardware and software
levels. Furthermore, attacks through remote interfaces [8], [3],
[1] are playing an increasing role [72], [64], [73], [40], [78]
where cross-domain sharing is not the root cause. Resource
sharing is unavoidable on personal computers, which serve
the purpose of executing third-party code both in the form of
native binaries or JavaScript on a website. Hence, researchers
try to find defense mechanisms that maintain sharing.
Eliminating Measurable Timing Differences. Bernstein [3]
proposed constant-time (i.e., no secret-dependent branches
or memory accesses) to mitigate cache attacks, a technique
that today is the standard means to protect cryptographic
algorithms. However, writing truly constant-time code can
still be challenging [86], [56]. Several independent works
proposed to manipulate timers to remove the ability to measure
timing differences through determinism [2], [47], [38] or fuzzi-
ness [74]. Furthermore, even without timing sources, counting
threads [82], [43], [63], [62] and timeless methods [73] are
viable alternatives. Disabling clflush [84], [24] can be
circumvented by using eviction [26].
Eliminating cache-line and cache-set sharing. Attack tech-
niques like Flush+Reload require shared memory and could

be stopped by removing shared memory [84]. Indeed, one
source of shared memory, page deduplication, is more and
more restricted to prevent its malicious use [70], [4], [66],
[13]. However, other use cases of shared memory, particu-
larly shared libraries, are unaffected and still available for
attacks [65]. Mitigating Prime+Probe requires addressing the
sharing issue on the level of cache sets, e.g., by coloring
cache lines and assigning colors to security domains [68],
[36], [20], [12]. Intel CAT [32] provides dedicated software
control over cache ways and can be used to separate workloads
into different parts of the cache [44]. Several works eliminate
sharing via cache flushing during context switches between
different domains [89], [20].
Detecting attacks. Many works researched the detection of
cache attacks in binaries [26], [16], [34], [7], or at runtime
using cache attacks [88], [26] or a range of performance
counters [28], [10], [87], [54].

III. NOVEL CLDEMOTE-BASED ATTACKS

In this section, we present two attacks for same-core attack
scenarios, Demote+Reload and Demote+Demote, and one
cross-core attack, DemoteContention.

A. Same-Core Attacks

Demote+Reload and Demote+Demote offer fast and stealthy
alternatives to existing cache attacks. Demote+Reload ex-
ploits the same hardware and software properties as Flush+
Reload, whereas Demote+Demote exploits the same hard-
ware and software properties as Flush+Flush. However, un-
like Flush+Reload and Flush+Flush, Demote+Reload and De-
mote+Demote do not induce a DRAM access. Cache misses
are the largest contributor to the execution time of cache
attacks, often taking hundreds of CPU cycles on average.
Consequently, they are responsible for larger blind spots
in attacks and lower attack frequencies. Furthermore, many
detection mechanisms focus on detecting cache misses, e.g.,
with performance counters. Demote+Reload and Demote+
Demote work across cores and in virtualized environments in
a typical scenario where read-only shared memory with the
victim process is available (e.g., shared libraries).

Demote+Reload and Demote+Demote build on the obser-
vation that the cldemote instruction can evict a cache line
from L1 to L3. Subsequent victim accesses load the cache line
into the L1 again, which the attacker can observe by timing
the reload operation in Demote+Reload or cldemote in
Demote+Demote. An attacker can also use Demote+Demote to
observe when a victim running on another core loads a cache
line into the cache and when it performs a write access on
another core. Furthermore, like Flush+Flush, Demote+Demote
can also be used to derive information on cache slices and CPU
cores as the access latency to different cache slices varies.

The basic principle of our two attack techniques is il-
lustrated in Figure 1. Demote+Reload follows the semantics
of Flush+Reload: The attacker first demotes the cache line,
then a victim operation possibly accesses this cache line,
and afterward, the attacker times reloading the cache line,

3

Physical Core

Attacker Victim

L1

L2

L3

1 23

4*

(a) Demote+Reload

Physical Core

Attacker Victim

L1

L2

L3

123*

(b) Demote+Demote

Fig. 1. Working principle of Demote+Reload and Demote+Demote. The ∗
denotes the timed operation. Solid lines are cldemote executions and dashed
lines memory accesses. Both attacks only move a cache line from L1 to L3.
The victim activity is visible by timing either the reload (Demote+Reload) or
the cldemote (Demote+Demote).

Attacker
Core

Victim
Core

L1

L2

L3

123*

(a) With Shared Memory

Attacker
Core

Victim
Core

L1

L2

L3

123*

(b) Without Shared Memory

Fig. 2. Cross-Core DemoteContention. The ∗ denotes the timed operation.
Solid lines are cldemote executions and dashed lines memory accesses. In
both attacks, the victim repeatedly moves a cache line from L1 to L3. The
attacker measures a memory access to the exact cache line the victim uses
(Figure 2a) or a cache line in the same cache set (Figure 2b).

observing whether the victim accessed it (Figure 1a). Demote+
Demote follows the semantics of Flush+Flush: The victim
first possibly accesses this cache line, and afterward, the
attacker times the cldemote instruction, observing whether
the victim accessed the cache line in between (Figure 1b). Due
to the reliance on a load to the L1 by the victim, both attacks
require that the attacker and victim run on the same physical
core but potentially different logical cores with SMT.

B. Cross-Core Attacks

Cross-core attacks like Prime+Probe and Evict+Reload
on previous systems exploited the inclusiveness of the L3
cache [49], [50]: Recent Xeon processors have a non-inclusive
L3. Evicting a cache line from the L3 implies the removal
of this cache line from all private L1 and L2 caches of all
cores. This is not the case on these new CPUs anymore, where
eviction from L3 has no implications on the private L1 and
L2 caches of any core. Consequently, Prime+Probe and Evict+
Reload can only sense when victim operations reach the L3
but not operations in the victim’s private L1 and L2 caches.
Beyond this limitation, the cache eviction in Prime+Probe and
Evict+Reload brings another significant hurdle for an attacker:
Eviction sets are generated based on physical addresses [49],
[75], the undocumented cache addressing functions [18], and
the undocumented cache replacement policy [23]. Mount-
ing efficient Prime+Probe or Evict+Reload would require to
reverse-engineer these functions and additionally to obtain

privileged physical address information, e.g., possibly via a
timing side channel [22], [14]. The non-inclusive L3 com-
plicates Prime+Probe and Evict+Reload even further as the
attacker’s accesses to the eviction set need to reach the L3.
This is possible by using cldemote, as we propose below,
or by creating an eviction set that simultaneously evicts L1
and L2 caches, moves the corresponding cache lines to the L3
and thereby evicts the L3 cache set. Our experiments indicate
that L1 and L2 eviction on Sapphire Rapids in general does
not lead to placement of cache lines in the L3, i.e., the L3
does not act primarily as a victim cache.

As an alternative to cross-core Prime+Probe and Evict+
Reload, we present a new cross-core attack, DemoteConten-
tion (Figure 2). DemoteContention is a reliable alternative to
Prime+Probe and Evict+Reload without reverse-engineering of
addressing functions and cache replacement. DemoteConten-
tion relies on contention on the L3 cache set by continuously
demoting a cache line. The attacker uses their own cache
line, i.e., no shared memory, located in the same L3 cache
set as the victim cache line, e.g., found via profiling [26].
If the victim performed an operation that reaches the L3
caches, DemoteContention observes a spike in the cldemote
execution time, even if the attacker-monitored cache line is not
in the cache, allowing for continuous execution of cldemote.

The reason why DemoteContention works, is that
cldemote has to interact with the L3 or cache directory, i.e.,
leading to contention on the corresponding set in the L3 or the
cache directory, regardless of the state of the cache line. The
L3 and the cache directory have been investigated in previous
works [83], [49] and identified as viable cross-core channels.
Given that cldemote, under regular usage, updates either
the L3 or cache directory, we suspect it performs a lookup in
the cache directory or L3 even before it knows whether the
cache line to be demoted is in the L1 or L2. Consequently,
cldemote is influenced by concurrent contention on the
corresponding set in the L3 or cache directory.

A significant limitation compared to same-core attacks,
including Demote+Reload and Demote+Demote, is that, based
on our experiments, we could only reliably trigger this situ-
ation by accessing a cache line and demoting. This limita-
tion applies identically to cross-core Prime+Probe and Evict+
Reload on Sapphire Rapids and Emerald Rapids.

IV. SYSTEMATIC EVALUATION OF STATE-OF-THE-ART
CACHE SIDE CHANNELS

In this section, we provide a systematic evaluation
of state-of-the-art cache attack techniques, including De-
mote+Reload, Demote+Demote, Flush+Reload [84], Flush+
Flush [24], Evict+Reload [26] on the L1, and Prime+
Probe [53] on the L1. All measurements are taken on the
Sapphire Rapids Xeon Silver 4410T (CPU SR) and the Emer-
ald Rapids Xeon Silver 4514Y (CPU ER) CPUs, as the very
new cldemote instruction is only supported on Intel Xeon
Sapphire Rapids and Emerald Rapids CPUs so far. Our setup
runs Ubuntu 22.04 LTS, Linux 6.2.0, and gcc 11.4 on the
CPU SR and Ubuntu 24.04 LTS, Linux 6.8.0, and gcc 11.4 on

4

TABLE I. COMPARISON OF ALL TESTED ATTACKS ON AN INTEL SAPPHIRE RAPIDS XEON SILVER 4410T (SR) AND AN EMERALD RAPIDS XEON
SILVER 4514Y (ER). THE HIT-MISS MARGIN AND ATTACK TIME ARE IN CYCLES (C).

Attack Topological Constr.

Shared Memory

Attack Margin
Temporal Prec. (SD)

Spatial Prec.
Blind Spot

Attack Time
Channel Cap. [Mbit/s]

Error Ratio

CPU SR/ER SR/ER SR ER SR ER SR/ER SR ER SR ER SR ER SR ER

Demote+Reload Core ✓ 48 C 34 C ±27 ns ±24 ns cache line 42.8% 42.6% 424.3 C 320.6 C 6.38 6.09 0.7% 0.7%
Demote+Demote Core ✓ 86 C 60 C ±17 ns ±16 ns cache line 0.0% 0.0% 185.8 C 137.6 C 8.34 9.36 4.6% 2.3%

DemoteContention CPU ✗ − − ±16 ns ±24 ns L3 cache set 90.1% 89.5% 185.8 C 137.6 C 0.18 0.19 5.9% 1.9%
Flush+Reload CPU ✓ 170 C 124 C ±24 ns ±15 ns cache line 89.9% 86.3% 614.1 C 462.8 C 1.94 2.15 4.9% 3.6%

Flush+Reload (SMT) Core ✓ 232 C 166 C ±20 ns ±20 ns cache line 75.1% 74.3% 614.1 C 462.8 C 2.35 2.01 3.4% 3.2%
Flush+Flush CPU ✓ 86 C 38 C ±12 ns ±15 ns cache line 0.0% 0.0% 192.0 C 155.2 C 8.80 10.26 1.2% 1.9%

Flush+Flush (SMT) Core ✓ 72 C 30 C ±19 ns ±18 ns cache line 0.0% 0.0% 192.0 C 155.2 C 8.55 9.03 5.6% 2.6%
Prime+Probe (L1) Core ✗ 78 C 68 C ±33 ns ±33 ns L1 cache set 23.9% 24.8% 281.2 C 245.0 C 3.62 3.78 10.9% 1.2%
Evict+Reload (L1) Core ✓ 10 C 4 C ±38 ns ±41 ns cache line 21.4% 15.5% 390.0 C 339.8 C 2.51 3.32 6.8% 1.4%

the CPU ER. We fixed the frequency for all experiments in
this section, except for the covert channel and noise resilience
tests, to reduce the noise of this comparison through frequency
scaling. For the measurements, we use rdtsc, like prior work,
providing a sub-nanosecond resolution timestamp. Similarly,
we use lfence and mfence instructions to ensure that the
instructions are ordered with respect to other instructions and
memory operations. Our findings are summarized in Table I.
While we attempted to mount Prime+Probe or Evict+Reload
on the L3, our experiments indicate that L1 and L2 eviction
does not reliably lead to placement of the cache line in
the L3. Furthermore, the addressing functions published by
Gerlach et al. [18] did not yield reliable eviction on the
more recent Sapphire Rapids microarchitecture either, possibly
due to non-inclusiveness or a change in addressing functions.
The only approach we found to place cache lines in the L3
reliably was cldemote. Additionally, physical addresses (for
the addressing functions) are privileged information, whereas
all other attacks in our comparison work with unprivileged
information only. Hence, we also evaluate DemoteContention
but not Prime+Probe or Evict+Reload on the L3.

A. Hit-Miss Margins

We define the hit-miss or attack margin for an attack as
the difference between the 95th percentile of the faster and
the 5th percentile of the slower case. The difference between
percentiles is a more meaningful metric than a difference
between averages, as the deviation around the mean would
be ignored otherwise. The results of our measurements for
all attacks are shown in Figure 3 (CPU SR) and Figure 13
(CPU ER). We conducted 10

6 measurements for each case.
The L1 hit, L3 hit, and DRAM access timings are shown

in Figure 3b and Figure 13b. For Demote+Reload, we dis-
tinguish between L1 hits (victim access) and L3 hits (after
cldemote). The resulting hit-miss margins are 48 cycles
(CPU SR) and 34 cycles (CPU ER). SMT Flush+Reload uses
L1 hits (victim access) and L3 misses (after clflush) with
hit-miss margins of 232 cycles (CPU SR) and 166 cycles
(CPU ER). Cross-core Flush+Reload uses L3 hits and L3
misses with hit-miss margins of 170 cycles (CPU SR) and
124 cycles (CPU ER). The margin is significantly larger for
Flush+Reload than Demote+Reload due to the long time it
takes to fetch memory from DRAM.

80 100 120 140 160 180 200 220 240
0

1

2

⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

L3 demote L1 demote RAM flush
L1 (SMT) flush L1 flush

(a) cldemote & clflush Timings

100 200 300
0

1

2

⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

L1 hit
L3 hit

L3 miss

(b) Memory Access Timings

30 40 50
0

2

4

6
⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

E+R access
E+R no access

(c) Evict+Reload

120 140 160
0

2

4

6 ⋅108

Execution time [CPU cycles]

N
o.

of
ca

se
s

No Contention
Contention

(d) Cross-core DemoteContention

200 250
0

2

4

⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

P+P access
P+P no access

(e) Prime+Probe

Fig. 3. Timing histograms for all tested attacks on our Xeon Silver 4410T.

The relevant timings for Demote+Demote and Flush+Flush
are shown in Figure 3a and Figure 13a. For Demote+Demote,
we distinguish between a cldemote on a cache line in the L1
(victim access) and a cache line in the L3 (after cldemote)
with attack margins of 86 cycles (CPU SR) and 60 cycles
(CPU ER). The similar SMT Flush+Flush attack distinguishes
between a clflush on a cache line in the L1 (victim access)
and a DRAM access (after clflush) with attack margins
of 72 cycles (CPU SR) and 30 cycles (CPU ER). Cross-
core Flush+Flush distinguishes between a clflush on a
cache line in an L1 of a different core (victim access) and
a not-present cache line with an attack margin of 86 cycles
(CPU SR) and 38 cycles (CPU ER). We can observe that the
margin for our Demote+Demote is significantly larger than for

5

Flush+Flush. It takes slightly longer to demote a cache line
from the L1 to the L3 than to flush a cache line accessed only
by the same core. This difference is most likely the result of
cldemote ensuring that the cache line is written to the L3
while clflush on an unmodified cache line only evicts the
data from the cache.

For Prime+Probe and Evict+Reload, we use an eviction-
set size of 12 as the Xeon Silver 4410T has a 12-way
set-associative L1 cache. L1 Prime+Probe (Figure 3c and
Figure 13c) has attack margins of 78 cycles (CPU SR) and 68
cycles (CPU ER). L1 Evict+Reload (Figure 3e and Figure 13e)
has attack margins of 10 cycles (CPU SR) and 4 cycles
(CPU ER). While the timings seem noise-free for Prime+Probe
and Evict+Reload, both attacks are highly susceptible to noise
from unrelated memory accesses as they monitor accesses to
whole cache sets in the relatively small L1.

Figure 3d shows the hit-miss histogram for DemoteConten-
tion. The contention case of DemoteContention (victim access)
takes 121.4 cycles (CPU SR) and 101.4 cycles (CPU SR), and
the no contention case (no victim access) takes 119.8 cycles
(CPU SR) and 100.3 cycles (CPU SR). The two cases overlap
almost entirely due to a large blind spot, which can not be
easily counteracted, as further discussed in Section IV-D. Due
to this, we do not have a realistic attack margin for Demote-
Contention. Despite this, the contention case has a significant
number of measurements above 124 cycles (CPU SR) and 116
cycles (CPU ER), which are not present without contention,
making the two cases distinguishable.

A high hit-miss margin is advantageous in scenarios with
a significant amount of noise, such as frequently changing
CPU frequency or other cache events on the CPU. This makes
Flush+Reload a good choice in a high-noise scenario, given its
large hit-miss margin. Despite this, a higher hit-miss margin
can come at a cost, e.g., higher attack times (see Section IV-D),
which is the case for Flush+Reload.

B. Temporal Precision

We measure the temporal precision by triggering accesses
at a low frequency and measuring the time it takes for
the attacker to detect them. The victim thread triggers an
access at random intervals. All attacks are performed with
a minimal attack loop, including the attack and a store to
a memory location if an access is detected. We define the
temporal difference as the timing difference between the start
of the victim access, measured with rdtsc directly before
the access, and the time the attacker detects the access. We
specifically use the start of the attacker’s measurement period
that detects the access. We use the start of the measuring
period instead of the end, as the end includes the attack
time, which can result in more noise and, therefore, a higher
standard deviation, an essential metric for attacks such as inter-
keystroke timing attacks. Furthermore, we evaluate the attack
time in a separate experiment (Section IV-D). Using the start
of an attack’s measurement period can result in a negative
temporal difference, as accesses that occur directly after the
measurement period starts can be detected by some attacks,

100 200 300 400
0
1
2
3
4 ⋅104

Delay [CPU cycles]

N
o.

of
ca

se
s

D+R F+R (SMT) F+R

(a) Flush+Reload & Demote+Reload

0 50 100 150 200
0

0.5

1
⋅105

Delay [CPU cycles]

N
o.

of
ca

se
s

D+D F+F (SMT) F+F

(b) Flush+Flush & Demote+Demote

−100 0 100 200 300
0

0.5

1
⋅105

Delay [CPU cycles]

N
o.

of
ca

se
s

DContention
P+P L1
E+R L1

(c) Prime+Probe, Evict+Reload & DemoteContention

Fig. 4. The delay between memory access and the start of the detection period
detected the access for all attacks on our Xeon Silver 4410T.

as seen in Figure 4c. Only successfully detected accesses
are included in this experiment, as blind spots are separately
evaluated in Section IV-D. The results are shown in Figure 4
and Figure 16. We conducted 10

6 measurements for each case,
and the standard error for all measurements is ≤ 0.1 cycles.

Our two CPUs perform very similarly for all attacks,
except for DemoteContention and cross-core Flush+Reload.
DemoteContention has a higher standard deviation (24 ns) on
CPU ER than on (16 ns) on CPU SR. Flush+Reload has a
significantly lower standard deviation at 15 ns on CPU ER
than on CPU SR (24 ns). The histogram in Figure 16a shows
that most measurements are at ≈ 180 cycles with some
outliers (not false positives) at ≈ 350 cycles that increase
the standard deviation. Without these outliers, the standard
deviation is 8 ns. We presume this results from a change in
inter-core communication in the microarchitecture related to
memory accesses, as SMT Flush+Reload does not exhibit
this difference but instead performs the same on both CPUs.
Excluding this, cross-core Flush+Flush has the lowest standard
deviations of 12 ns (CPU SR) and 15 ns (CPU ER). Demote+
Demote has the lowest standard deviations of all same-core
attacks, including same-core Flush+Flush of 17 ns (CPU SR)
and 16 ns (CPU ER). Evict+Reload performs the worst with
±38 ns (CPU SR) and ±41 ns (CPU ER). Overall, all tested
attacks have a standard deviation of tens of nanoseconds at

6

most, which is ideal for variance-critical attacks such as inter-
keystroke timing attacks.

C. Spatial Precision and Topological Scope

The spatial precision of the side channels we evaluate is
defined by the microarchitectural element they attack. We
provide the spatial precision for all attacks in Table I. While
the attacks have theoretical spatial precision, it is essential
to note that practically, targeting multiple locations within a
particular memory range can be challenging due to hardware
mechanisms interfering, e.g., 4 kB due to the prefetcher, or
parts of an 8 kB block scattered over 512 kB due to the DRAM
row buffer. Demote+Reload, Demote+Demote, SMT Flush+
Reload, and SMT Flush+Flush have a spatial precision of L1
cache lines (or L2 cache lines, depending on the threshold),
allowing them to monitor if a 64B memory region was
recently accessed. L1 Evict+Reload has a spatial precision
of L1 cache lines. Cross-core Flush+Reload and cross-core
Flush+Flush have a spatial precision of L3 cache lines. L1
Prime+Probe has a spatial precision of L1 cache sets, and
thus, can only detect whether any cache line is loaded into
the monitored cache set. Cross-core DemoteContention has a
spatial precision of L3 cache sets, i.e., like Prime+Probe on
the L3 cache.

Another spatial aspect is the topological scope of an attack,
which is influenced by the microarchitectural element under
attack and aspects such as the availability of shared memory
between victim and attacker. Depending on these, an attack on
a co-located victim using a specific technique may be viable
or not. For instance, Flush+Reload requires co-location on the
same physical CPU (on Intel) or core complex (on AMD)
and, additionally, the use of a shared library or other read-
only shared memory to mount an attack. Other attacks, e.g.,
L1 Prime+Probe, require co-location on the same physical core
as the target is the L1 cache. Demote+Reload and Demote+
Demote also require co-location on the same core, as the target
is primarily the L1 cache. We provide an overview of all
attacks in Table I.

D. Attack Times and Blind Spot

The attack time is essential in determining the throughput an
attack can achieve. To determine the attack time, we evaluated
the attack round length and provide the results in Figure 5 and
Figure 14. An attack round consists of the minimal code for
the tested attacks, a check whether the resulting timing value
is above or below a threshold and an access is detected, and a
store of the result in an atomic variable for further processing
in a separate thread. We conducted 10

6 measurements for each
case. The standard error of the average for all results is ≤ 0.1
cycles. On both CPUs, the tested attacks perform similarly to
each other, with the main change being a lower cycle count
for all measurements on our CPU ER due to a different clock
frequency compared to our CPU SR.

Demote+Demote has the lowest attack times, with 185.8
cycles (CPU SR) and 137.6 cycles (CPU ER) with no vic-
tim access, and 289.2 cycles (CPU SR) and 216.5 cycles

400 500 600 700
0

2

4

6 ⋅105

Execution time [CPU cycles]

N
o.

of
ca

se
s

D+R no acc. D+R acc. F+R no acc.
F+R (SMT) acc. F+R acc.

(a) Flush+Reload & Demote+Reload

160 180 200 220 240 260 280 300
0
1
2
3
4 ⋅105

Execution time [CPU cycles]

N
o.

of
ca

se
s

F+F no acc. F+F (SMT) acc. F+F acc.
D+D no acc. D+D acc.

(b) Flush+Flush & Demote+Demote

280 300 320 340 360 380 400
0
2
4
6
8

⋅105

Execution time [CPU cycles]

N
o.

of
ca

se
s

P+P no acc. P+P acc. E+R no acc.
E+R acc.

(c) Prime+Probe & Evict+Reload

Fig. 5. Execution time in cycles of a single attack iteration for all tested
attacks on our Xeon Silver 4410T.

(CPU ER) with a victim access (see Figure 5b and Figure 14b).
The similar SMT Flush+Flush has attack times of 192.0 cycles
(CPU SR) and 146.5 cycles (CPU ER) with no victim access
and 264.9 cycles (CPU SR) and 197.7 cycles (CPU ER) with
a victim access. The attack time without a victim access for
Demote+Demote is slightly lower than for Flush+Flush. The
attack time after a victim access for SMT Flush+Flush is
slightly lower than for Demote+Demote; this is expected, as
cldemote on an L1 cache line is slightly slower than a
clflush on the cache line in the L1 of the attacking core (see
Section IV-A). We consider the case without a victim access
more relevant, as it is more common in most attack scenarios.
Both Demote+Demote and Flush+Flush consist of measuring
a single instruction without further setup, unlike Flush+Reload
and Demote+Reload, resulting in significantly lower attack
times. Flush+Reload performs the worst with attack times of
614.1 cycles (CPU SR) and 462.8 cycles (CPU ER) with no
victim access (see Figure 5a and Figure 14a).

The attack time for cross-core DemoteContention is the
same as for Demote+Demote in the case of no victim access.
The victim access case is challenging to evaluate as cross-
core DemoteContention is based on contention with a huge
blind spot and high noise. Despite this, the attack time with
a victim access is only slightly longer than in the case of no
victim access, as shown in Figure 3d and Figure 13d.

7

0
3,
00
0

6,
00
0

0.25
0.5

0.75
1

Sleep length [cycles]

B
lin

d-
sp

ot
si

ze
[%

]
P+P F+R (SMT) F+R E+R
D+R DContention

Fig. 6. Blind-spot size of all tested attacks that have a blind-spot for varying
delay lengths after each attack iteration. The blind-spot size is given in the
percent of a single attack loop iteration (including the delay) on our Xeon
Silver 4410T.

The times for the case with no victim access for all attacks
are summarized in Table I. With a lower attack time, an
attacker can probe the cache more frequently and, therefore,
can detect memory accesses that are closer to each other. This
is particularly useful in attacks that benefit from additional
information, such as fingerprinting attacks. While a low attack
time is advantageous, the attack performance can still be worse
as cache activity may be missed due to blind spots.

Cache side-channel measurements are typically destructive
in the sense that they destroy the previous state of the microar-
chitectural element. Restoring the previous state takes time,
during which a victim’s operation may be missed. Therefore,
this observer effect is called “blind spot” and has been studied
as a limiting factor for attacks [24], [58]. To measure the
size of the blind spot, we let one thread continuously execute
the attack. After a random number of cycles, a second thread
accesses the memory location, which the first thread monitors.
We log whether the attack detected the memory access. We
repeat this measurement 1 000 times, resulting in a percentage
of successfully detected memory accesses. We use this result
as an approximation for the size of the blind spot a given
attack has relative to its execution time. Furthermore, to show
the effect the wait time after each attack iteration can have
on the blind spot, we ran our evaluation for different sleep
or delay periods after each attack execution. We additionally
combine these results with the previously measured values
for the attack time with no victim access to compute an
estimate for the absolute blind-spot size in cycles. Similar to
previously discussed metrics, the blind spot for all attacks is
very similar for both of our tested CPUs. The sample size for
all measurements is 200, and the standard error is ≤ 1%.

Our blind-spot evaluation results are shown in Figure 6
and Figure 15. We use a blind-spot percentage instead of
a cycle estimate, as it directly represents the percentage of
victim accesses that an attacker might miss and visualizes
the effect a delay after each attack iteration has on the blind
spot. Demote+Demote and Flush+Flush are excluded from
this plot, as we did not observe a blind spot for both of
them, resulting in a blind-spot size of ≈0% regardless of the
delay length. The blind spot for all attacks, except for cross-
core DemoteContention, decreases with an increase in the

delay length, approaching ≈0%. This is the expected behavior
as a longer delay decreases the likelihood of the victim
accessing the memory in the blind spot of the attack. Cross-
core DemoteContention is the only exception, as it relies on
contention with the victim. For cross-core DemoteContention,
the victim and attacker have to access the same L3 cache set
at roughly the same time. An increase in the delay length after
each attack iteration decreases the likelihood for the attacker to
trigger the contention, increasing the blind-spot size, as shown
in Figure 6 and Figure 15. Ideally, the blind-spot size for
cross-core DemoteContention would approach 1. However, the
small attack margin, as discussed in Section IV-A of cross-core
DemoteContention, results in a high amount of noise, which,
in turn, results in a high amount of false positives compared
to the other tested attacks. These false positives lead to an
underestimation of the blind spot. Also, the relative blind-spot
size for Prime+Probe and Evict+Reload only slightly decreases
over time as they are more susceptible to noise.

The full list of blind-spot sizes is provided in Table I.
We will discuss the results of Xeon Silver 4410T here, as
the results from both CPUs are almost identical. The attacks
with the lowest blind-spot size relative to the attack time are
Demote+Demote and Flush+Flush, with ≈0% on both tested
CPUs. Next is Evict+Reload with 21.4%, followed by Prime+
Probe with 23.9%. SMT Flush+Reload has a blind-spot length
of 75.1%. Cross-core Flush+Reload has a slightly higher blind
spot than the SMT variant, with 89.9%. The smaller blind
spot for the SMT Flush+Reload variant could result from the
CPU core merging loads. Demote+Reload has a blind-spot
length of only 42.8%, performing significantly better than the
similar Flush+Reload. Finally, cross-core DemoteContention
has a blind-spot size of 90.1%.

The blind spots measured show that a delay between attack
iterations can be vital for an effective attack. Especially for
Flush+Reload, not using a delay makes the attack significantly
less useful. While the blind spot for all listed attacks, except
for DemoteContention, can be counteracted by a sufficiently
large delay between attack iterations, adding this delay de-
creases the frequency in which the attacker can probe the
cache, potentially losing information if the victim frequently
accesses the monitored cache lines. When combining the
attack times with the blind spot, Demote+Demote is optimal
for SMT attacks, as it has no blind spot and the lowest attack
time, and Flush+Flush is optimal for a cross-core attacker due
to its also low attack time and non-existent blind spot.

E. Channel Capacity and Noise Resilience

The channel capacity is a standard evaluation metric for
side channels. While prior work reported capacities for most
of these side channels, comparing covert-channel capacities
across different systems can be misleading as the channel
capacity can be significantly influenced by the general perfor-
mance of a CPU or its memory subsystem. Consequently, we
take a different approach where we construct a simple covert
channel that can be instantiated generically with any of the
side channels we discuss. The basic construction uses time

8

time

window window

offset offset

sender

receiver

Fig. 7. Our basic covert channel construction and the dimensions to optimize.
The window parameter defines the size of a single transmission window, and
offset defines the head start the sender gets to prepare, e.g., access memory
locations.

TABLE II. SINGLE-BIT (1-BIT) AND MULTI-BIT (N-BIT)
COVERT-CHANNEL TRUE CAPACITY IN MBIT/S AND ERROR RATIO OF ALL

TESTED ATTACKS ON AN INTEL XEON SILVER 4410T.

Attack
Cap.

(1-bit)
BER

(1-bit)
Cap.

(n-bit)
BER

(n-bit)

Opt. Demote+Reload 11.47 0.2% 15.48 2.0%
Opt. Flush+Reload 5.42 0.7% 9.42 0.3%

Opt. Flush+Reload (SMT) 5.58 1.8% 9.17 0.6%
Demote+Reload 6.38 0.7% 6.38 0.7%
Demote+Demote 6.03 0.7% 8.34 4.6%

DemoteContention 0.18 5.9% 0.18 5.9%
Flush+Reload 1.94 4.9% 1.94 4.9%

Flush+Reload (SMT) 2.35 3.4% 2.35 3.4%
Flush+Flush 4.43 2.7% 8.80 1.2%

Flush+Flush (SMT) 4.56 1.1% 8.55 5.6%
Prime+Probe (L1) 3.62 10.9% 3.62 10.9%
Evict+Reload (L1) 2.51 6.8% 2.51 6.8%

slices to transmit one or more bits through the channel. To
provide a fair comparison, we assume perfect synchronization
of the first time slice used by the channel. We use two threads
for each channel, one receiver, and one sender thread. Each
channel capacity listed in this section has a sample size of 100
and a standard error of the mean of ≤0.2Mbit/s.

This simple channel has two dimensions to optimize (Fig-
ure 7): First, the window length. Reducing the window length
increases how many slices fit in a time frame, i.e., increasing
the transmission rate. Second, the offset the receiver has from
the sender. The offset prevents receiving too early before
the sender has sent the data, which could result in incorrect
detections. While the error ratio can also be a parameter to
optimize for, we avoid this additional dimension by working
with the true capacity computed from the raw capacity and
the error ratio. This way, we optimize for the optimal trade-
off between error ratio and raw capacity. Furthermore, we can
adjust the number of bits sent within a window to further
optimize the true capacity.

Our approach to finding the optimal parametrization of the
covert channel is to start with a single bit per window and
reduce the receiver offset. As the next step, we decrease the
window length. We optimize each attack for an increasing
number of bits sent in parallel to maximize the true capacity.
For some attacks, e.g., cross-core DemoteContention, the
optimal capacity is achieved with a single bit per window.

Standard Demote+Reload and Flush+Reload variants are
not optimized for fast covert channel transmission, as the
receiver always accesses memory and afterward flushes or
demotes it. As receiver and sender fully cooperate to transmit

data, we tested optimized versions for the data transmissions
of the two attacks in addition to the standard versions. With
Demote+Reload, the sender demotes a cache line to send a
‘1 ‘ and does nothing to send a ‘0 ‘. The receiver measures
the access time to the memory location to detect if the cache
line has been demoted. With Flush+Reload, the sender flushes
a cache line to send a ‘1 ‘ and does nothing to send a ‘0 ‘.
The receiver measures the access time to the memory location
to detect if the cache line was flushed. These approaches
minimize the memory interactions, requiring only the receiver
to access memory, resulting in significantly higher speeds.

The results for each side channel are provided in Ta-
ble II (CPU SR) and Table IX (CPU ER). With one bit per
window, optimized Demote+Reload performs the best with
11.47Mbit/s (CPU SR) and 11.10Mbit/s (CPU ER). De-
mote+Reload and Demote+Demote perform similarly on our
CPU SR with 6.38Mbit/s and 6.04Mbit/s, respectively. On our
CPU ER, Demote+Demote is faster with 8.17Mbit/s compared
to Demote+Reload 6.09Mbit/s, presumably due to microar-
chitectural changes. Optimized cross-core Flush+Reload has
capacities of 5.42Mbit/s (CPU SR) and 6.51Mbit/s (CPU ER).
SMT Flush+Flush performs significantly worse than Demote+
Demote using one bit per window at 4.56Mbit/s (CPU SR)
and 5.03Mbit/s (CPU ER). DemoteContention performs the
worst with 0.18Mbit/s (CPU SR) and 0.19Mbit/s (CPU ER).
However, without reverse-engineering L3 addressing functions
and replacement policies, this is the only cross-core attack
available that does not require shared memory.

Sending more than one bit per window increases the capac-
ities of optimized Demote+Reload to 15.48Mbit/s (CPU SR)
and 17.03Mbit/s (CPU ER) using 12 bits, resulting in the
overall fastest channel. Optimized cross-core Flush+Reload
has capacities of 9.17Mbit/s (CPU SR) and 10.01Mbit/s
(CPU ER) using 12 with SMT Flush+Reload performing
similarly. Cross-core Flush+Flush increases to 8.80Mbit/s
(CPU SR) and 10.26Mbit/s (CPU ER) using 800 bits with
SMT Flush+Flush performing similarly. Flush+Flush performs
similarly on CPU SR and slightly better on CPU ER using
multiple bits. While in a single-bit transmission scenario,
Flush+Flush is bottlenecked by the L3 misses of the sender,
these delays can be hidden by sending multiple bits at once,
leading to the similar performance of the two channels as
the execution times of cldemote and clflush are similar
(see Section IV-A). Demote+Demote increases to 8.34Mbit/s
(n=100, σx̄=0.008) using 1 000 bits. The remaining attacks’
channel capacity did not increase with more than one bit per
transmission window.

We measure the noise resilience by starting on a completely
idle system and measuring the true capacity of the optimized 1-
bit covert channels, representing a typical attack scenario. We
gradually increase the system load from 0 to one worker per
logical CPU core, using cache thrashing worker threads from
the stress-ng test suite. As shown in Figure 11 and Figure 12,
all attacks suffer from noise.

Optimized Demote+Reload drops significantly until 10
workers and afterward decreases slowly to 5.24Mbit/s

9

(≈−56%) on our CPU SR (see Figure 11a) and 2.23Mbit/s
(≈−80%) on our CPU ER (see Figure 12a), performing
the best. Cross-core DemoteContention performs the worst,
dropping drastically, reaching almost 0 kbit/s at 10 (≈−100%)
on both tested CPUs. The remaining attacks perform similarly
to each other, dropping slowly until they lose ≈80% to 95% of
their channel capacity with the maximum number of workers
on both CPUs, as shown in Figure 11 and Figure 12.

While the covert channel capacity is a metric to show
how fast information can be transmitted covertly using a
given attack, it also demonstrates how much information each
channel can theoretically leak in a given time. The 1-bit
scenario is the typical attack scenario, where an attacker wants
to monitor a single memory location. When monitoring a
single memory location, Demote+Demote performs the best
with a capacity similar to Demote+Reload on our CPU SR and
outperforming it on CPU ER. This makes Demote+Demote
the better choice in such a scenario over other attacks when
attacking over other attacks such as Flush+Flush and Flush+
Reload when targeting a victim over SMT. When monitoring
many memory locations, Flush+Flush performs slightly better
than Demote+Demote while also working across cores.

F. Detectability

Cho et al. [11] recently developed a detection
scheme using mem_load_retired.l1_miss (L1
miss), mem_load_retired.l2_miss (L2 miss),
mem_load_retired.l3_miss (L3 miss), and
br_inst_retired.all_branches (retired branches).
This is similar to the approaches of Gulmezoglu et al. [27]
and Gruss et al. [24]. To evaluate the detectability of the
different attacks, we focused on the performance counters
selected by Cho et al. [11].

We evaluated all attacks with no victim access for 10
6

iterations, as shown in Table V (CPU SR) and Table VII
(CPU ER). While the performance counter values in the
base cases of the two CPUs are different, possibly due to
the different CPU, kernel version, and compiler version, the
changes in values for each attack are very similar. SMT Flush+
Flush, cross-core Flush+Flush, Demote+Demote, Prime+Probe
and DemoteContention are indistinguishable from the base
cases (no attack being executed), with the variations mainly
resulting from noise on both CPUs. As these attacks do
not induce any accesses by themselves, they do not induce
any L1, L2, or L3 misses without accesses from somewhere
else. Evict+Reload significantly increases the L1 misses by
≈ 13 ⋅106, as it constantly reloads and evicts the victim cache
line and the eviction set. SMT Flush+Reload increases the
L1, L2, and L3 misses by ≈ 10

6, as for every iteration, the
victim cache line is loaded from the DRAM and flushed from
all caches. Cross-core Flush+Reload increases the L1 and L2
misses by ≈ 2 ⋅106, and the L3 misses by ≈ 10

6, as the cache
line is loaded from DRAM once per iteration and then loaded
into the victim and attacker cores. Demote+Reload has ≈ 10

6

extra L1 and L2 misses but does not increase the L3 misses,
as the victim cache line is only moved between the L1 and

the L3. The number of retired branches is unchanged from the
base case for each attack, as no attacks perform extra branches.

The results with a victim access are shown in Table VI and
Table VIII, again with 10

6 iterations. The L1, L2, and L3
misses for DemoteContention do not change compared to no
victim access, as the attack does not rely on a cache line being
cached, and it does not directly interact with the victim cache
line. This makes cross-core DemoteContention indistinguish-
able from running no attack. Evict+Reload performs similarly
to the case of no victim access and increases the L1 misses
by ≈ 13 ⋅ 106 compared to the base case and is otherwise
indistinguishable from running no attack. Prime+Probe per-
forms almost identically to Evict+Reload. SMT Flush+Reload
performs almost identically with no victim access. Cross-
core and SMT Flush+Flush perform the same as cross-core
and SMT Flush+Reload, respectively, as in these attacks, the
victim loads the cache line, and the attacker evicts it. Demote+
Reload and Demote+Demote perform almost identically with
≈ 3.7 ⋅ 106 L1 and L2 misses, and no additional L3 misses.
The number of retired branches is unchanged from the base
case for each attack, as no attacks perform any extra branches.

Overall, DemoteContention is the only attack that can not be
detected using any performance counters tested, as it does not
trigger memory accesses or modify the state of victim cache
lines. All other attacks result in more L1 misses (Prime+Probe
and Evict+Reload), more L1 and L2 misses (Demote+Reload
and Demote+Demote), or more L1, L2, and L3 misses (Flush+
Flush, Flush+Reload). Still, Demote+Demote and Flush+Flush
have the advantage of being indistinguishable from the base
case if no victim access is performed, making them challeng-
ing to detect with low-frequency victim accesses.

V. DEMOTE+RELOAD ATTACK CASE STUDIES

In this section, we evaluate our attacks in multiple case
studies: First, we compare Demote+Reload and Demote+
Demote to existing attacks on an AES T-tables attack and
an inter-keystroke timing attack. Second, we demonstrate that
cldemote does not only result in leaks through access times
but also through power consumption [37]. Finally, we show
that cldemote can break KASLR, even on systems that do
not officially support cldemote.

A. Attacking OpenSSL AES T-tables

A standard benchmark for cache side-channel attacks is
OpenSSL AES T-tables. While the T-table implementation
is not used anymore by OpenSSL, it is a common means
to compare cache attacks in a realistic cryptographic attack
scenario, i.e., repeatable high-frequency attacks to accumulate
leakage. We mounted a last-round attack following the ap-
proach by Irazoqui et al. [35]. All attacks were run in a same-
core scenario, i.e., the attacker triggers the encryption (with an
inaccessible key) and then mounts the cache attack after the
encryption. For statistical significance, we perform 1 000 key
recoveries, corresponding to at least 10 million runs of each
of the attacks. The success rate of the key recovery increases
with the number of samples, i.e., even with noisy channels the

10

TABLE III. COMPARISON OF ATTACK TECHNIQUES ON SAPPHIRE
RAPIDS. DEMOTE+RELOAD RESULTS IN THE LOWEST OVERALL ATTACK

RUNTIME.

Attack Yield Correct Encrypt. Runtime

Demote+Reload ✗ 98.7% 11 000 14.5ms
Flush+Reload ✗ 97.9% 11 000 18.0ms
Demote+Demote ✓ 99.2% 9 000 20.9ms
Demote+Demote ✗ 97.1% 15 000 22.6ms
Flush+Flush ✗ 99.3% 18 000 38.1ms
Flush+Flush ✓ 98.8% 16 000 42.2ms
Evict+Reload ✗ 97.2% 470 000 529.8ms
Evict+Reload ✓ 97.2% 320 000 554.0ms
Prime+Probe ✓ 66.7% 1 000 000 1 320.5ms

TABLE IV. COMPARISON OF ATTACK TECHNIQUES ON EMERALD
RAPIDS. DEMOTE+RELOAD RESULTS IN THE LOWEST OVERALL ATTACK

RUNTIME. YIELDING DID NOT IMPROVE THE ATTACK PERFORMANCE FOR
ANY OF THE ATTACKS.

Attack Yield Correct Encrypt. Runtime

Demote+Reload ✗ 98.6% 13 000 16.7ms
Flush+Reload ✗ 99.2% 13 000 20.4ms
Demote+Demote ✗ 99.2% 16 000 23.6ms
Flush+Flush ✗ 99.2% 20 000 37.8ms
Evict+Reload ✗ 97.2% 360 000 1 263.9ms
Evict+Reload ✓ 97.2% 320 000 1 369.8ms
Prime+Probe ✓ 53.4% 1 000 000 3 246.6ms

attack typically converges to the correct key with sufficient
samples. An attacker can minimize the attack runtime by
minimizing the number of encryptions until the success rate
is not 100% anymore. Hence, this is a good metric for
comparison: We minimize the number of encryptions for each
attack until we reach a 97% to 99% correct key guess range.
As seen in Table III, sched_yield, while costing > 100
cycles, can help improve the attack performance, as it indicates
to the operating system that this is a cooperative thread: With
default configuration, the kernel then less frequently preempts
(interrupts) the thread. Furthermore, it increases the chance of
running an idle thread, reducing power dissipation and thermal
emissions, and hence, throttling effects.

We evaluated the use of sched_yield for all attacks.
For Flush+Reload and Demote+Reload, we only observed a
significant slow-down with sched_yield, but no significant
increase in attack accuracy, resulting in a significantly higher
runtime. We provide the numbers for all 6 attack techniques,
including the sched_yield-optimized variants that resulted
in competitive performance, in Table III. For Prime+Probe, we
did not reach a 97% to 99% correct key guess range, even
with 2 orders of magnitude higher numbers of encryptions,
and instead evaluated it for 1 million encryptions.

As shown in Table III, Demote+Reload results in the overall
lowest attack runtime, with 14.5ms and 98.7% of the key
guesses correct. The number of encryptions required to reach
this percentage is the same as with Flush+Reload, 11 000. This
is on par with state-of-the-art key recovery attacks on AES that
require, e.g., 6 000 to 10 000 encryptions [67], [35], [6]. How-
ever, Flush+Reload is 24% slower than Demote+Reload. Only
Demote+Demote with sched_yield worked with a lower
number of encryptions, namely 9 000, yet had a higher overall

(a) Demote+Reload (b) Flush+Reload (c) Evict+Reload

(d) Demote+Demote (e) Flush+Flush (f) Prime+Probe

Fig. 8. Comparison of different attack techniques over 10 000 encryptions
using a zero key. The y-axis is the plaintext byte value, and the x-axis is the
T-table cache lines. A darker shade means more cache line accesses. A visible
diagonal shows that the attack correctly identified the zero key.

runtime due to the runtime overhead of sched_yield.
Without sched_yield, there is more noise, requiring 15 000
encryptions to get to the same correct key rate. This is not
unexpected as Demote+Demote has virtually no blind spot,
and any interrupt will result in a timing deviation that is
noise for the attack. For Flush+Flush, we observe a similar
situation, where adding a sched_yield allows us to reduce
the number of encryptions from 18 000 to 16 000, but this is
not enough to compensate the runtime cost of sched_yield,
resulting in the highest attack runtime in our test. Evict+
Reload and Prime+Probe (on the L1) required the highest
number of traces for key recovery. As we focus on the L1,
the timing difference between hit and miss is very low (< 10
cycles), and thus, it is more susceptible to noise due to subtle
timing variations, bringing up the attack runtime. Without
sched_yield, the number of encryptions required is higher,
but the overall runtime is lower. For a visual comparison of the
three attacks, we provide a zero-key first-round attack matrix
in Figure 8. The x-axis corresponds to the cache lines making
up the T-Table, and the y-axis corresponds to the plaintext
byte. A darker color means more detected accesses. A visible
diagonal means that an attack identified the zero key correctly.
The less visible the diagonal, the harder it is to identify the
key with a given attack.

On the Emerald Rapids (Table IV), we find that the positive
effects of sched_yield disappear largely. Only for Evict+
Reload and Prime+Probe, we reaquire a lower number of
encryptions with sched_yield. The number of encryptions
required and attack runtimes overall increased slightly, as we
see slightly more noise on this system. Still, Demote+Reload
and Demote+Demote have high performance, comparable to
the other state-of-the-art attacks.

B. Inter-Keystroke Timing Attack

Another standard benchmark for cache side channels is to
mount an inter-keystroke timing attack, which can be used to
infer the actual key press values and written text [69], [51].
Keystroke attacks are an excellent means to compare cache

11

attacks in scenarios of low-frequency, non-repeatable attacks,
where leakage cannot be easily accumulated, but the accuracy
of a single attack is more relevant. For our attack, we first used
a template attack to identify leaky offsets in a shared library
using Flush+Reload [26]. Afterward, we use the same offset
in the shared library for Flush+Reload and Demote+Reload to
compare their temporal precision and noise resilience.

For both our Flush+Reload attack and our Demote+Reload
attack, we let a human perform 1000 keystrokes, typing into a
program over multiple minutes to obtain the ground truth for
the timings. In parallel, we run one of the two attacks, which
have exactly the same implementation except for swapping the
clflush and cldemote instructions and the corresponding
hit-miss threshold. We observe that for both Flush+Reload and
Demote+Reload, there are no false positive detections. This
highlights the noise resilience of both attacks. With Flush+
Reload, we ran ≈2.8 million, and with Demote+Reload ≈3.6
million attacks per second, with not a single measurement
resulting in a false positive detection. For Demote+Reload,
we observed no false negatives, and for Flush+Reload, only
a single one, i.e., Flush+Reload detected 999 out of 1000
keystrokes correctly. That is, in terms of the F-Score measure,
which is often used to assess the accuracy of keystroke
detection [26], [24], [52], we achieve an F-Score of 1 in
this experiment for Demote+Reload and 0.999 5 for Flush+
Reload, showing that the attacks are on par. For the temporal
precision, we observe a mean delta between the ground truth
and the recovered timing of 288.5 ns (n=1000, σx̄=3.95 ns)
with Flush+Reload and 233.5 ns (n=1000, σx̄=2.73 ns) with
Demote+Reload. While an attacker can account for the mean
delta, the standard error σx̄ remains an inaccuracy. Thus, we
can conclude that Demote+Reload has roughly 30% more
temporal precision in this attack scenario. It is essential to
highlight that timing variations of humans are orders of
magnitude higher (i.e., in the millisecond range) [41], than
either of the two attacks.

On Emerald Rapids, the noise resilience is unchanged, with-
out a single false positive within 5.8 million Demote+Reload
and 3.6 million Flush+Reload attacks per second. However, it
appears that sched_yield has a more pronounced effect on
the blind spot now. While for Demote+Reload, the number of
false negatives remains at zero without sched_yield, yield-
ing a strictly better attack performance. For Flush+Reload,
omitting sched_yield increases the false negative rate from
1.5% to 3.4% and lowers the F-Scores correspondingly from
0.992 to 0.983. The temporal precision increases slightly to
a mean delta of 245.1 ns (n=1000, σx̄=3.54 ns) with Flush+
Reload (with sched_yield), 182.8 ns (n=1000, σx̄=3.23 ns)
with Flush+Reload (without sched_yield), and 134.9 ns
(n=1000, σx̄=1.99 ns) with Demote+Reload. This is in line
with the other observations, indicating a higher attack perfor-
mance on Emerald Rapids, where some attacks are affected
by noise more than on Sapphire Rapids.

C. Collide+Power

Collide+Power [37] exploits the power leakage of data
collisions in the memory subsystem between security do-
mains. These microarchitectural data collisions occur since the
memory subsystem is shared between the attacker and victim
domain, including caches and buses connecting the distinct
cache levels. Therefore, data blocks traveling over the shared
components immediately after another expose their Hamming
distance, i.e., the number of different bits, in the power
domain, resulting in an exploitable signal to recover the actual
data. We focus on a specific leakage effect of Collide+Power,
the so-called self-leakage [37]: Here, the Hamming distance
between the upper and lower 32B of a cache line leak to
one another when the cache line is moved into the L3 cache,
reflecting the behavior of cldemote.

We show that cldemote amplifies the self-leakage effect
for software-based power-analysis attacks when data is fre-
quently demoted into the L3 cache, e.g., to make the data
used in a multithreaded context visible to other physical
cores faster as recommended by the Intel guidelines [31].
We measure the power consumption via the package domain
of the Running Average Power Limit (RAPL) interface. We
repeat a single store instruction once with and once without
the added optimization in a loop for ≈ 12ms to record
a single measurement sample. The analysis framework of
Collide+Power uses the recorded power samples to fit the
power model P (U,L) = x ⋅ hd(U,L), where the coefficient
x indicates the strength of the Hamming distance leakage
between the upper (U) and lower (L) 32B of the cache line.

We record 1.2 million samples per case and estimate a
power leakage of x = 310 µW per bit difference between U
and L when using cldemote on our Xeon Silver 4410T. For
our Xeon Silver 4514Y, we record 3.5 million samples with an
estimated power leakage of x = 119 µW. In contrast, we do not
observe a significant power leakage without the optimization.
Finally, we compute the Pearson correlation coefficient of the
power model and the measurements, resulting in correlations
of 0.012 (Xeon Silver 4410T) and 0.004 (Xeon Silver 4514Y)
for the case with cldemote and no significant correlation
without the instruction. Therefore, using cldemote as an
optimization to improve cross-core access latencies, as recom-
mended by Intel [31], increases the attack surface for software-
based power-analysis attacks.

D. Breaking KASLR

In this section, we demonstrate a KASLR break using the
cldemote instruction on Ubuntu 22.04 LTS (Linux 6.2.0) on
our Xeon Silver 4410T and Ubuntu 24.04 LTS (Linux 6.8.0)
on our Xeon Silver 4514Y. We exploit the absence of faults
by cldemote and its’ TLB-dependent timing behavior, i.e.,
cldemote needs to translate an address before determining
if the demote operation is valid. KASLR is a low-cost security
mechanism, randomizing kernel code and data addresses. Due
to many KASLR breaks [29], [22], [21], [9], [39], the security
value may be limited, but it is now a typical benchmark
for new microarchitectural attacks. The TLB-induced timing

12

25
6

51
2

76
8

50
60
70
80
90

Page Offset

Ti
m

e
[c

yc
le

s]

(a) Xeon Silver 4410T

25
6

51
2

76
8

50
60
70

Page Offset

Ti
m

e
[c

yc
le

s]

(b) Xeon Silver 4514Y

Fig. 9. Execution time of cldemote over the Kernel Text segment KASLR
range for all 2MB pages. The mapped regions show a significant drop in
execution time, revealing the KASLR offset to an attacker at page offset 302
on our Xeon Silver 4410T and offset 298 on our Xeon Silver 4514Y.

25
6

51
2

76
8

40
50
60
70

Page Offset

Ti
m

e
[c

yc
le

s]

(a) i7-1260P

25
6

51
2

76
8

30
40
50
60

Page Offset

Ti
m

e
[c

yc
le

s]

(b) i9-13900K

Fig. 10. Execution time of cldemote over the Kernel Text segment KASLR
range for all 2MB pages on two CPUs that do not support the instruction.
The mapped regions show a significant drop in execution time on both CPUs,
even though the instruction should be interpreted as a nop.

difference we exploit can be used to detect if an address has a
cached translation even if the address is not accessible, e.g., a
kernel address. We assume the attacker can execute arbitrary
unprivileged code on the victim system and has access to
a high-precision timer such as the TSC but no access to
privileged interfaces (e.g., /proc/self/pagemap).

As large parts of the kernel are regularly accessed through
interrupts, syscalls, context switches, and other kernel ac-
tivities, they have TLB entries. The cldemote timing
for the first cache line of each 2MB page starting at
0xffffffff80000000 covering the kernel binary mapping
region is shown in Figure 9. For our Xeon Silver 4410T
(Sapphire Rapids), shown in Figure 9a, the execution time for
invalid addresses is ≈85 cycles. The dips to ≈53 cycles (start-
ing at offset 302, virtual address 0xffffffffa5c00000)
indicate mapped pages. For our Xeon Silver 4514Y (Emerald
Rapids), shown in Figure 9b, the execution time for invalid
addresses is ≈70 cycles. The dips to ≈43 cycles (starting
at offset 298, virtual address 0xffffffffa5400000) in-
dicate mapped pages. We verified these mappings for both
CPUs through /proc/kallsyms. Scanning the kernel bi-
nary KASLR range multiple times to account for noise to find
the base address takes <10ms on both CPUs.

The cldemote is currently only supported on recent
Xeon microarchitectures. On all other CPUs, cldemote
<register> is interpreted as a nop that dereferences the
register. Indeed, cldemote does not exhibit any unexpected
timing behavior on any 10th-generation or older Intel Core
CPUs we tested. However, for our Alder Lake i7-1260P CPU
and Raptor Lake i9-13900K CPU, the instruction has a timing

behavior similar to the Xeon Silver 4410T when used on
mapped but inaccessible kernel addresses. Even though this
timing behavior for cldemote exists on these unsupported
CPUs, cldemote does not trigger a cache line demotion
on valid memory locations. The instruction triggers only a
memory translation on these CPUs and does not further
influence program behavior. This behavior seems specific
to the cldemote op-code, as we could not find another
nop instruction that exhibits the same timing behavior. The
cldemote timings for both CPUs are provided in Figure 10.
Similar to the Sapphire Rapids CPU, there are clear drops in
execution time at the page offsets where the kernel is mapped,
which is offset 43 (virtual address 0xffffffff85600000)
for our i7-1260P in Figure 10a, and offset 427 (virtual address
0xffffffffb5600000) for our i9-13900K in Figure 10b.

The other attacks discussed in Section IV can not be used
to leak the full KASLR offset. Only Prime+Probe and De-
moteContention can be used to leak the bits that are used for
determining the cache set, but not the full address. This is a
distinct advantage of Demote+Demote over other attacks.

VI. DISCUSSION AND MITIGATIONS

Cache attacks can be prevented at three levels: at the hard-
ware level, at the system level, and finally, at the application
level. At the hardware level, several solutions have been
proposed to prevent cache attacks, either by removing cache
interferences, or randomizing them. The solutions include new
secure cache designs [79], [80], [45] or altering the prefetcher
policy [17]. However, hardware changes are not applicable
to commodity systems. At the system level, page coloring
provides cache isolation in software [59], [36]. Zhang et al.
[89] proposed a more relaxed isolation like repeated cache
cleansing. These solutions cause performance issues, as they
prevent optimal use of the cache. Application-level counter-
measures seek to find the source of information leakage and
patch it [5]. However, application-level countermeasures are
bounded and cannot prevent cache attacks such as covert
channels. In contrast to prevention solutions that incur a loss
of performance, using performance counters does not prevent
attacks but rather detects them without overhead.

VII. CONCLUSION

Finding new generic cache attack techniques is crucial to
understanding the attack surface of modern CPUs. We present
three new attacks, Demote+Reload and Demote+Demote, that
rely on the newly introduced cldemote instruction. We
provide the first systematic evaluation of 9 characteristics of
the most relevant cache attacks and our newly introduced
attacks. We showed that Demote+Reload and Demote+Demote
offer advantages on some characteristics, such as the blind
spot and attack duration, and the high channel capacity of
15.48Mbit/s. We performed further benchmarks, including
AES T-table key recovery, an inter-keystroke timing attack,
a fast KASLR break, and an amplified Collide+Power attack.
This shows that our new attack techniques are an important
extension and complement to the existing generic techniques.

13

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our anonymous
shepherd for their guidance, comments, and suggestions. This
research is supported in part by the European Research Coun-
cil (ERC project FSSec 101076409), and the Austrian Sci-
ence Fund (FWF project NeRAM I6054). Additional funding
was provided by a generous gifts from Red Hat, and Intel.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

REFERENCES

[1] O. Acıiçmez, W. Schindler, and C. K. Koc, “Cache Based Remote
Timing Attack on the AES,” in CT-RSA, 2006.

[2] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating timing
channels in compute clouds,” in CCSW, 2010.

[3] D. J. Bernstein, “Cache-Timing Attacks on AES,” 2005. [Online].
Available: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[4] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector,” in S&P,
2016.

[5] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software mit-
igations to hedge AES against cache-based software side channel
vulnerabilities,” Cryptology ePrint Archive, Report 2006/052, 2006.

[6] S. Briongos, P. Malagón, J.-M. de Goyeneche, and J. M. Moya, “Cache
misses and the recovery of the full AES 256 key,” Applied Sciences,
vol. 9, no. 5, p. 944, 2019.

[7] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym:
Cache aware symbolic execution for side channel detection and mitiga-
tion,” in S&P, 2019.

[8] D. Brumley and D. Boneh, “Remote Timing Attacks Are Practical,” in
USENIX Security, 2003.

[9] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and D. Gruss,
“KASLR: Break It, Fix It, Repeat,” in AsiaCCS, 2020.

[10] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using Hardware Performance Counters,”
Cryptology ePrint Archive, Report 2015/1034, 2015.

[11] J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-time detection
for cache side channel attack using performance counter monitor,”
Applied Sciences, vol. 10, no. 3, p. 984, 2020.

[12] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An empirical
study of timing channels on seL4,” in CCS, 2014.

[13] A. Costi, B. Johannesmeyer, E. Bosman, C. Giuffrida, and H. Bos, “On
the effectiveness of same-domain memory deduplication,” in European
Workshop on Systems Security, 2022.

[14] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized Many-sided Rowhammer Attacks
From JavaScript,” in USENIX Security, 2021.

[15] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+Abort:
A Timer-Free High-Precision L3 Cache Attack using Intel TSX,” in
USENIX Security, 2017.

[16] G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke,
“CacheAudit: A Tool for the Static Analysis of Cache Side Channels,”
in USENIX Security, 2013.

[17] A. Fuchs and R. B. Lee, “Disruptive Prefetching: Impact on Side-
Channel Attacks and Cache Designs,” in SYSTOR, 2015.

[18] L. Gerlach, S. Schwarz, N. Faroß, and M. Schwarz, “Efficient and
generic microarchitectural hash-function recovery,” S&P, 2024.

[19] L. Giner, S. Steinegger, A. Purnal, M. Eichlseder, T. Unterluggauer,
S. Mangard, and D. Gruss, “Scatter and Split Securely: Defeating Cache
Contention and Occupancy Attacks,” in USENIX Security, 2023.

[20] M. M. Godfrey and M. Zulkernine, “Preventing Cache-Based Side-
Channel Attacks in a Cloud Environment,” IEEE Transactions on Cloud
Computing, 2014.

[21] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the Line: Practical Cache Attacks on the MMU.” in NDSS, 2017.

[22] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR,” in CCS,
2016.

[23] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[24] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
Fast and Stealthy Cache Attack,” in DIMVA, 2016.

[25] D. Gruss, F. Schuster, O. Ohrimenko, I. Haller, J. Lettner, and M. Costa,
“Strong and Efficient Cache Side-Channel Protection using Hardware
Transactional Memory,” in USENIX Security, 2017.

[26] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches,” in USENIX Security,
2015.

[27] B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar, “For-
tuneTeller: Predicting Microarchitectural Attacks via Unsupervised Deep
Learning,” arXiv:1907.03651, 2019.

[28] N. Herath and A. Fogh, “These are Not Your Grand Daddys CPU
Performance Counters – CPU Hardware Performance Counters for
Security,” in Black Hat USA, 2015.

[29] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks against Kernel Space ASLR,” in S&P, 2013.

[30] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Cache Attacks Enable Bulk Key Recovery on the Cloud,” in CHES,
2016.

[31] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z,” 2023.

[32] ——, “Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide,” 2024.

[33] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared Cache
Attack that Works Across Cores and Defies VM Sandboxing – and its
Application to AES,” in S&P, 2015.

[34] ——, “MASCAT: Stopping Microarchitectural Attacks Before Execu-
tion,” Cryptology ePrint Archive, Report 2016/1196, 2017.

[35] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! A
fast, Cross-VM attack on AES,” in RAID, 2014.

[36] T. Kim, M. Peinado, and G. Mainar-Ruiz, “StealthMem: system-level
protection against cache-based side channel attacks in the cloud,” in
USENIX Security, 2012.

[37] A. Kogler, J. Juffinger, L. Giner, L. Gerlach, M. Schwarzl, M. Schwarz,
D. Gruss, and S. Mangard, “Collide+power: Leaking inaccessible data
with software-based power side channels,” in USENIX Security, 2023.

[38] D. Kohlbrenner and H. Shacham, “Trusted Browsers for Uncertain
Times,” in USENIX Security, 2016.

[39] J. Koschel, C. Giuffrida, H. Bos, and K. Razavi, “TagBleed: Breaking
KASLR on the Isolated Kernel Address Space Using Tagged TLBs,” in
EuroS&P, 2020.

[40] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“NetCAT: Practical Cache Attacks from the Network,” in S&P, 5 2020.

[41] P.-M. Lee, W.-H. Tsui, and T.-C. Hsiao, “The Influence of Emotion
on Keyboard Typing: An Experimental Study Using Auditory Stimuli,”
PLOS ONE, vol. 10, pp. 1–16, 2015.

[42] M. Lipp, D. Gruss, and M. Schwarz, “AMD Prefetch Attacks through
Power and Time,” in USENIX Security, 2022.

[43] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “AR-
Mageddon: Cache Attacks on Mobile Devices,” in USENIX Security,
2016.

[44] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in HPCA, 2016.

[45] F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in MICRO,
2014.

[46] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P, 2015.

[47] R. Martin, J. Demme, and S. Sethumadhavan, “TimeWarp: rethinking
timekeeping and performance monitoring mechanisms to mitigate side-
channel attacks,” ACM SIGARCH Computer Architecture News, 2012.

[48] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: Cross-Cores
Cache Covert Channel,” in DIMVA, 2015.

[49] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse Engineering Intel Complex Addressing Using Performance
Counters,” in RAID, 2015.

[50] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. Al-
berto Boano, S. Mangard, and K. Römer, “Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud,” in NDSS, 2017.

[51] J. Monaco, “SoK: Keylogging Side Channels,” in S&P, 2018.

14

[52] J. V. Monaco, “Feasibility of a Keystroke Timing Attack on Search
Engines with Autocomplete,” in IEEE Security and Privacy Workshops
(SPW), 2019.

[53] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: the Case of AES,” in CT-RSA, 2006.

[54] M. Payer, “HexPADS: a platform to detect “stealth” attacks,” in ESSoS,
2016.

[55] C. Percival, “Cache Missing for Fun and Profit,” in BSDCan, 2005.
[56] C. Pereida Garcı́a, B. B. Brumley, and Y. Yarom, “Make Sure DSA

Signing Exponentiations Really Are Constant-Time,” in CCS, 2016.
[57] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic Analysis

of Randomization-based Protected Cache Architectures,” in S&P, 2021.
[58] A. Purnal, F. Turan, and I. Verbauwhede, “Prime+Scope: Overcoming

the Observer Effect for High-Precision Cache Contention Attacks,” in
CCS, 2021.

[59] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource Management
for Isolation Enhanced Cloud Services,” in CCSW, 2009, pp. 77–84.

[60] G. Saileshwar, C. W. Fletcher, and M. Qureshi, “Streamline: a fast, flush-
less cache covert-channel attack by enabling asynchronous collusion,”
in ASPLOS, 2021.

[61] G. Saileshwar and M. K. Qureshi, “MIRAGE: Mitigating Conflict-Based
Cache Attacks with a Practical Fully-Associative Design,” in USENIX
Security, 2021.

[62] M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
in DIMVA, 2017.

[63] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic Timers
and Where to Find Them: High-Resolution Microarchitectural Attacks
in JavaScript,” in FC, 2017.

[64] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
Spectre: Read Arbitrary Memory over Network,” in ESORICS, 2019.

[65] M. Schwarzl, E. Kraft, and D. Gruss, “Layered Binary Templating,” in
ACNS, 2023.

[66] M. Schwarzl, E. Kraft, M. Lipp, and D. Gruss, “Remote Page Dedupli-
cation Attacks,” in NDSS, 2022.

[67] M. Seddigh and H. Soleimany, “Enhanced Flush+Reload Attack on
AES,” ISC International Journal of Information Security, 2020.

[68] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring,” in Depend-
able Systems and Networks Workshops (DSN-W), 2011.

[69] D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of Keystrokes
and Timing Attacks on SSH,” in USENIX Security, 2001.

[70] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory Deduplication as
a Threat to the Guest OS,” in EuroSys, 2011.

[71] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling Your Secrets Without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution,” in USENIX Security, 2017.

[72] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in CCS, 2015.

[73] T. Van Goethem, C. Pöpper, W. Joosen, and M. Vanhoef, “Timeless
Timing Attacks: Exploiting Concurrency to Leak Secrets over Remote
Connections,” in USENIX Security, 2020.

[74] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating fine grained
timers in Xen,” in CCSW, 2011.

[75] P. Vila, B. Köpf, and J. Morales, “Theory and Practice of Finding
Eviction Sets,” in S&P, 2019.

[76] S. Walton, “How Screwed is Intel without Hyper-Threading?”
2019. [Online]. Available: https://www.techspot.com/article/1850-how-
screwed-is-intel-no-hyper-threading/

[77] D. Wang, A. Neupane, Z. Qian, N. Abu-Ghazaleh, S. V. Krishnamurthy,
E. J. Colbert, and P. Yu, “Unveiling your keystrokes: A Cache-based
Side-channel Attack on Graphics Libraries,” in NDSS, 2019.

[78] Y. Wang, R. Paccagnella, E. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning Power Side-Channel Attacks Into
Remote Timing Attacks on x86,” in USENIX Security, 2022.

[79] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” ACM SIGARCH Computer Architec-
ture News, vol. 35, no. 2, p. 494, 2007.

[80] ——, “A Novel Cache Architecture with Enhanced Performance and
Security,” in MICRO, 2008.

[81] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization,” in USENIX Security, 2019.

[82] J. C. Wray, “An Analysis of Covert Timing Channels,” Journal of
Computer Security, 1992.

[83] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in S&P, 2019.

[84] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security, 2014.

[85] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the Intel
Last-Level Cache,” Cryptology ePrint Archive, Report 2015/905, 2015.

[86] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A Timing Attack
on OpenSSL Constant Time RSA,” JCEN, 2017.

[87] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar: A Real-Time Side-
Channel Attack Detection System in Clouds,” in RAID, 2016.

[88] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone: Co-
residency Detection in the Cloud via Side-Channel Analysis,” in S&P,
2011.

[89] Y. Zhang and M. Reiter, “Düppel: retrofitting commodity operating
systems to mitigate cache side channels in the cloud,” in CCS, 2013.

APPENDIX

A. Covert Channel and Noise Resilience

To determine the noise resilience, we run the 1-bit covert
channel for all attacks with a varying number of background
workers that perform cache-heavy operations. The results of
our measurements are shown in Figure 11 and Figure 12. Opti-
mized Demote+Reload (Figure 11a and Figure 12a) performed
the best, while DemoteContention (Figure 11b) performs the
worst, dropping to roughly 0Mbit/s capacity. All other attacks
lose ≈ 80%−95% of their capacity with the maximum number
of worker threads.

B. Performance Counter Values

The performance counter values of L1, L2, and L3 misses,
as well as retired branches for all tested attacks after 10

6

iterations without a victim access, are shown in Table V and
Table VII. Demote+Demote, cross-core DemoteContention,
Flush+Flush, and cross-core Flush+Flush are indistinguishable
from no attack. The performance counter values for all tested
attacks after 10

6 iterations with victim access are shown in
Table VI and Table VIII. Only cross-core DemoteContention
can not be detected with the tested performance counters. All
other attacks show at least a significant increase in L1 misses.

C. Further Emerald Rapids Data

In this section, we present visualizations and summariza-
tions of further data collected on our Xeon Silver 4514Y.
Histograms of all the attack’s hit-miss timings are shown in
Figure 13. Similar as on our Sapphire Rapids CPU, SMT
Flush+Reload has the largest margin at 166 cycles as it
distinguishes between a fast L1 hit and a slow L3 miss
(Figure 13b). Evict+Reload has the lowest margin at only 4
cycles, which is the difference between an L1 hit and an L2
hit (Figure 13c).

The attack times for all attacks are visualized in Figure 14.
The results on our Xeon Silver 4514Y are very similar to the
measurements on our Xeon Silver 4410T, with Flush+Reload
having the highest attack time at 462.8 cycles, and Demote+
Demote and DemoteContention having the lowest attack times
at 137.6 cycles.

15

0 5 10 15 20
0

5

10

Stress Workers

C
ap

.

(a) Opt. Demote+Reload

0 5 10 15 20
0

0.1

0.2

Stress Workers

C
ap

.

(b) Cross-core DemoteContention

0 5 10 15 20
0

2

4

6

Stress Workers

C
ap

. SMT
Cross-Core

(c) Opt. Flush+Reload

0 5 10 15 20
0

1

Stress Workers

C
ap

. SMT
Cross-Core

(d) Flush+Reload

0 5 10 15 20
0

2

4

Stress Workers

C
ap

. SMT
Cross-Core

(e) Flush+Flush

0 5 10 15 20
0
1
2
3
4

Stress Workers

C
ap

. E+R
P+P

(f) Evict+Reload & Prime+Probe

0 5 10 15 20
0
2
4
6

Stress Workers

C
ap

. D+R
D+D

(g) Demote+Reload & Demote+Demote

Fig. 11. Noise resilience of single-bit covert channels of all tested attacks. We
increase the system noise with stress-ng worker threads until the number of
cores of our Xeon Silver 4410T and provide the true capacity in Mbit/s. The
capacity deteriorates for all attacks, indicating their respective noise resilience.

TABLE V. PERFORMANCE COUNTER VALUES FOR 10
6

RUNS OF EACH
TESTED ATTACK WITHOUT A VICTIM ACCESS ON OUR XEON SILVER

4410T.

Attack L1 misses L2 misses L3 misses Retired Branches

Base (SMT) 2 544 058 846 906 1 713 11 334 083
Base 4 004 011 11 758 1 834 12 101 850

Demote+Demote 2 303 139 717 459 1 566 11 156 613
DemoteContention 4 007 309 8 975 1 691 12 155 189

Demote+Reload 3 646 498 1 674 391 1 835 11 916 259
Flush+Flush (SMT) 2 130 205 709 578 1 640 10 781 589

Flush+Flush 3 839 776 12 712 1 923 12 127 306
Flush+Reload (SMT) 3 767 829 1 824 473 1 001 707 11 681 115

Flush+Reload 4 964 559 1 010 402 1 001 811 12 189 253
Evict+Reload 15 011 970 7 252 1 775 11 495 609
Prime+Probe 2 112 567 6 537 2 118 11 355 660

The blind-spot size and the effect of a delay between
each attack iteration are shown in Figure 15. The relative
blind spots are almost identical to the ones measured on our
Sapphire Rapids CPU, with DemoteContention having the
largest blind spot at 89.5%, closely followed by cross-core
Flush+Reload with 86.3%. Flush+Flush and Demote+Demote
have no measurable blind spot.

The temporal difference is visualized in Figure 16. Similar
to the other metrics, the temporal differences are very similar
to our measurements on our other Sapphire Rapids CPU,

0 10 20 30
0

5

10

Stress Workers

C
ap

.

(a) Opt. Demote+Reload

0 10 20 30
0

0.1

0.2

Stress Workers

C
ap

.

(b) Cross-core DemoteContention

0 10 20 30
0
2
4
6

Stress Workers

C
ap

. SMT
Cross-Core

(c) Opt. Flush+Reload

0 10 20 30
0

1

Stress Workers

C
ap

. SMT
Cross-Core

(d) Flush+Reload

0 10 20 30
0

2

4

6

Stress Workers

C
ap

. SMT
Cross-Core

(e) Flush+Flush

0 10 20 30
0
1
2
3
4

Stress Workers

C
ap

. E+R
P+P

(f) Evict+Reload & Prime+Probe

0 10 20 30
0
2
4
6
8

Stress Workers
C

ap
. D+R

D+D

(g) Demote+Reload & Demote+Demote

Fig. 12. Noise resilience of single-bit covert channels of all tested attacks. We
increase the system noise with stress-ng worker threads until the number of
cores of our Xeon Silver 4514Y and provide the true capacity in Mbit/s. The
capacity deteriorates for all attacks, indicating their respective noise resilience.

TABLE VI. PERFORMANCE COUNTER VALUES FOR 10
6

RUNS OF EACH
TESTED ATTACK WITH A VICTIM ACCESS ON OUR XEON SILVER 4410T.

Attack L1 misses L2 misses L3 misses Retired Branches

Base (SMT) 2 463 241 852 141 1 457 11 210 752
Base 4 010 026 10 842 1 797 12 130 563

Demote+Demote 3 785 925 1 827 874 1 651 11 770 045
DemoteContention 4 012 453 9 195 1 888 12 139 868

Demote+Reload 3 756 115 1 811 665 1 723 11 892 382
Flush+Flush (SMT) 3 975 578 1 985 406 1 001 658 12 213 584

Flush+Flush 5 910 518 1 902 374 1 001 977 12 201 676
Flush+Reload (SMT) 3 985 752 1 991 979 1 001 816 12 240 320

Flush+Reload 6 885 299 2 902 632 1 001 760 12 207 778
Evict+Reload 15 010 561 6 685 2 180 11 830 557
Prime+Probe 15 010 450 6 686 2 062 11 647 487

with the only exception being cross-core Flush+Reload. The
standard deviation for cross-core Flush+Reload is significantly
lower at 15 ns compared to the 24 ns measured on our Sapphire
Rapids CPU. This is most likely the result of some microar-
chitectural changes in the CPU.

The channel capacities for single-bit and multi-bit covert
channels are summarized in Table IX. In both single-bit and
multi-bit optimized Demote+Reload performs the best with
11.10Mbit/s and 17.03Mbit/s respectively. Demote+Demote
has the second-best in single-bit performance at 8.17Mbit/s

16

TABLE VII. PERFORMANCE COUNTER VALUES FOR 10
6

RUNS OF
EACH TESTED ATTACK WITHOUT A VICTIM ACCESS ON OUR XEON SILVER

4514Y.

Attack L1 misses L2 misses L3 misses Retired Branches

Base (SMT) 47 121 11 299 1 496 10 630 295
cc Base 2 895 991 2 886 008 1 412 11 744 772

Demote+Demote 44 239 9 136 1 367 10 886 159
DemoteContention 2 988 775 2 975 436 1 338 11 781 288

Demote+Reload 1 052 979 1 011 615 1 337 10 884 189
Flush+Flush (SMT) 40 709 9 722 1 446 10 884 115

Flush+Flush 2 795 098 2 784 195 1 781 11 714 560
Flush+Reload (SMT) 1 075 286 1 016 118 1 001 531 10 882 563

Flush+Reload 4 042 492 4 026 895 1 001 513 11 713 327
Evict+Reload 13 023 103 10 946 1 468 10 881 358
Prime+Probe 41 488 9 483 1 753 10 874 922

TABLE VIII. PERFORMANCE COUNTER VALUES FOR 10
6

RUNS OF
EACH TESTED ATTACK WITH A VICTIM ACCESS ON OUR XEON SILVER

4514Y.

Attack L1 misses L2 misses L3 misses Retired Branches

Base (SMT) 55 672 13 004 1 582 10 629 320
Base 2 933 579 2 922 245 1 452 11 682 440

Demote+Demote 1 045 714 1 011 050 1 525 10 882 479
DemoteContention 2 979 165 2 964 159 1 468 11 745 555

Demote+Reload 1 053 159 1 011 066 1 409 10 885 386
Flush+Flush (SMT) 1 051 465 1 011 173 1 001 311 10 887 482

Flush+Flush 4 291 916 4 280 915 1 001 030 11 742 261
Flush+Reload (SMT) 1 068 255 1 012 946 1 001 391 10 885 194

Flush+Reload 5 444 751 5 429 372 1 001 418 11 748 249
Evict+Reload 13 021 365 11 188 1 569 10 885 999
Prime+Probe 13 020 591 12 295 1 470 10 881 335

TABLE IX. SINGLE-BIT (1-BIT) AND MULTI-BIT (N-BIT)
COVERT-CHANNEL TRUE CAPACITY IN MBIT/S AND ERROR RATIO OF ALL

TESTED ATTACKS ON AN INTEL XEON SILVER 4514Y.

Attack
Cap.

(1-bit)
BER

(1-bit)
Cap.

(n-bit)
BER

(n-bit)

Opt. Demote+Reload 11.10 0.6% 17.03 1.4%
Opt. Flush+Reload 6.51 2.2% 10.01 1.2%

Opt. Flush+Reload (SMT) 5.31 1.7% 9.24 1.0%
Demote+Reload 6.09 0.7% 6.09 0.7%
Demote+Demote 8.17 1.7% 9.36 2.3%

DemoteContention 0.19 1.9% 0.19 1.9%
Flush+Reload 2.15 3.6% 2.15 3.6%

Flush+Reload (SMT) 2.01 3.2% 2.01 3.2%
Flush+Flush 5.74 2.0% 10.26 1.9%

Flush+Flush (SMT) 5.03 2.1% 9.03 2.6%
Prime+Probe (L1) 3.78 2.0% 3.78 2.0%
Evict+Reload (L1) 3.32 1.4% 3.32 1.4%

and cross-core Flush+Flush has the best multi-bit performance
at 10.26Mbit/s.

60 80 100 120 140 160
0

1

2

3 ⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

L3 demote L1 demote RAM flush
L1 (SMT) flush L1 flush

(a) cldemote & clflush Timings

50 100 150 200
0

1

2

3

⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

L1 hit
L3 hit

L3 miss

(b) Memory Access Timings

30 35 40 45
0

2

4

6
⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

E+R access
E+R no access

(c) Evict+Reload

90 100 110 120
0

1

2

3 ⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

No Contention
Contention

(d) Cross-core DemoteContention

160 180 200 220 240 260
0

2

4

⋅106

Execution time [CPU cycles]

N
o.

of
ca

se
s

P+P access
P+P no access

(e) Prime+Probe

Fig. 13. Timing histograms for all tested attacks on our Xeon Silver 4514Y.

17

300 350 400 450
0

2

4

6
⋅105

Execution time [CPU cycles]

N
o.

of
ca

se
s

D+R no acc. D+R acc. F+R no acc.
F+R (SMT) acc. F+R acc.

(a) Flush+Reload & Demote+Reload

140 160 180 200 220 240
0

2

4

6
⋅105

Execution time [CPU cycles]

N
o.

of
ca

se
s

F+F no acc. F+F (SMT) acc. F+F acc.
D+D no acc. D+D acc.

(b) Flush+Flush & Demote+Demote

240 260 280 300 320 340
0
2
4
6
8

⋅105

Execution time [CPU cycles]

N
o.

of
ca

se
s

P+P no acc. P+P acc. E+R no acc.
E+R acc.

(c) Prime+Probe & Evict+Reload

Fig. 14. Execution time in cycles of a single attack iteration for all tested
attacks on our Xeon Silver 4514Y.

0
3,
00
0

6,
00
0

0.25
0.5

0.75
1

Sleep length [cycles]

B
lin

d-
sp

ot
si

ze
[%

]

P+P F+R (SMT) F+R E+R
D+R DContention

Fig. 15. Blind-spot size of all tested attacks that have a blind-spot for varying
delay lengths after each attack iteration on our Xeon Silver 4514Y. The blind-
spot size is given in the percent of a single attack loop iteration (including
the delay).

50 100 150 200 250 300 350
0

2

4

6
⋅104

Delay [CPU cycles]

N
o.

of
ca

se
s

D+R F+R (SMT) F+R

(a) Flush+Reload & Demote+Reload

0 20 40 60 80 100 120 140
0

0.5

1

⋅105

Delay [CPU cycles]

N
o.

of
ca

se
s

D+D F+F (SMT) F+F

(b) Flush+Flush & Demote+Demote

0 50 100 150 200 250
0

1

2
⋅105

Delay [CPU cycles]

N
o.

of
ca

se
s

DContention P+P L1 E+R L1

(c) Prime+Probe, Evict+Reload & DemoteContention

Fig. 16. The delay between memory access and the start of the detection
period that detected the access for all attacks on our Xeon Silver 4514Y.

18

