ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

ARTIFACT
EVALUATED
zusenix

»

AVAILABLE REPRODUCED

Minefield: A Software-only Protection for SGX Enclaves against DVFS Attacks

Andreas Kogler
Graz University of Technology

Daniel Gruss
Graz University of Technology

Michael Schwarz
CISPA Helmholtz Center for Information Security

Abstract

Modern CPUs adapt clock frequencies and voltage levels to
workloads to reduce energy consumption and heat dissipa-
tion. This mechanism, dynamic voltage and frequency scaling
(DVES), is controlled from privileged software but affects
all execution modes, including SGX. Prior work showed that
manipulating voltage or frequency can fault instructions and
thereby subvert SGX enclaves. Consequently, Intel disabled
the overclocking mailbox (OCM) required for software un-
dervolting, also preventing benign use for energy saving.

In this paper, we propose Minefield, the first software-level
defense against DVFS attacks. The idea of Minefield is not
to prevent DVFS faults but to deflect faults to trap instruc-
tions and handle them before they lead to harmful behav-
ior. As groundwork for Minefield, we systematically analyze
DVES attacks and observe a timing gap of at least 57.8 us be-
tween every OCM transition, leading to random faults over at
least 57 000 cycles. Minefield places highly fault-susceptible
trap instructions in the victim code during compilation. Like
redundancy countermeasures, Minefield is scalable and en-
ables enclave developers to choose a security parameter be-
tween 0 % and almost 100 %, yielding a fine-grained security-
performance trade-off. Our evaluation shows a density of 0.75,
i.e., one trap after every 1-2 instruction, mitigates all known
DVES attacks in 99 % on Intel SGX, incurring an overhead
of 148.4 % on protected enclaves. However, Minefield has
no performance effect on the remaining system. Thus, Mine-
field is a better solution than hardware- or microcode-based
patches disabling the OCM interface.

1 Introduction

With a variety of use cases for modern computers, CPUs have
an increasing number of features, also for security and perfor-
mance. One feature available on Intel, AMD and ARM CPUs
are trusted execution environments (TEEs). TEEs enable run-
ning code in a secure environment isolated from the rest of
the system with the security goal of protecting code and data
even from a compromised operating system or hypervisor.

To accommodate today’s performance and efficiency goals,
modern CPUs operate at various clock frequencies and volt-
age levels to adapt to the current workload. When the work-
load is low or energy must be saved due to thermal or battery
constraints, the voltage level and the clock frequency are low-
ered. This mechanism, DVFS, is available on ARM, Intel,
and AMD CPUs and can be controlled from privileged soft-
ware. However, the modified voltage and frequency affect all
security domains on the CPU.

Previous work [15, 32, 38, 40,41, 48] has shown that an
attacker can manipulate voltage and frequency using DVFS
to inject faults into victim computations. The typical target
of these attacks are TEEs since DVFES requires root privi-
leges [32,38,40,41,48] or physical access [15], both of which
are allowed in TEE threat models. The attacker uses DVFS
to bring one or more CPU cores into a state where faults can
occur with a very low probability. Thus, the CPU mostly still
allows regular operation, i.e., it does not cause a system crash.
In this state, certain operations are more likely to experience
a fault. Previous work has identified several of these opera-
tions, e.g., multiplication operations, pointer arithmetics, and
AES-NI instructions. However, most instructions have not yet
been analyzed for their fault probability.

In response to the DVFS attacks on Intel CPUs, Intel issued
a CVE (CVE-2019-11157) and modified the SGX remote at-
testation process to verify that overclocking mailbox (OCM)
and its model-specific registers (MSRs) allowing software-
undervolting are disabled via a microcode update. The voltage
regulators responsible for the core’s voltage are connected
to a bus receiving commands from CPU components, e.g.,
the OCM. In contrast, VoltPillager [15] directly sends these
commands over the bus bypassing the CPU and the OCM.
Therefore, disabling the OCM still leaves Intel CPUs without
a fully-integrated voltage regulator (FIVR) design [11] vul-
nerable to VoltPillager [15] style attacks. Disabling the OCM
led to complaints [17,22] as the OCM is used to reduce over-
heating problems, thus increasing system performance and
stability by undervolting the CPU. Some online guides even
explicitly recommend reverting BIOS updates to get back the

undervolting feature, breaking the ability to run SGX enclaves
securely on these machines [17]. Disabling undervolting only
if SGX is enabled impacts the entire system performance
and stability if enclaves are used and is thus also not a de-
sirable tradeoff. Selectively disabling undervolting while an
enclave is active requires complex microcode changes, as the
CPU has to ensure stable voltage levels on any reentry of
the enclave. While it is unclear whether this is even possible
with a microcode update, we also expect a high impact on the
performance of enclaves.

In this paper, we propose the first software-level defense
that probabilistically protects secure enclaves against all
known DVFS attacks. As an empirical foundation for our
defense, we systematically analyze DVFS attacks and cate-
gorize them based on the type of fault and its properties (e.g.,
spatial granularity, temporal granularity, and reproducibility).
As part of our empirical analysis, we develop a framework to
scan the x86 instruction set for DVFS fault susceptibility. Our
analysis of the instructions with the highest fault probability
confirms the implicit assumption from previous works that
multiplications are most susceptible to faults. Hence, we rely
on this instruction for our fault-deflection mechanism. We
also analyze the temporal constraints and observe a timing
gap of at least 57.8 us between transitions from one voltage
level to another. With the resulting weak control over the tem-
poral fault location, state-of-the-art attacks have to repeat the
victim operation millions of times [32,38,40,41]. Currently,
an attacker cannot precisely predict when and where during
these operations the fault occurs.

Our defense, Minefield is a pure software-level defense
implemented as a compiler extension. The basic idea of Mine-
field is not to prevent DVFES faults but to deflect them into
trap instructions that are placed in the victim code during
compilation, so that they cannot be weaponized anymore. The
number of trap instructions scales as a security parameter
from 0 % to almost amount for 100 % of the code base, yield-
ing a fine-grained security-performance trade-off. Note that
a security parameter of 100 % would refer to a program that
consists only of trap instructions and no other instructions.
Our evaluation shows that a trap density of 0.5, i.e., one trap
after every second instruction, mitigates the known DVFS at-
tacks on Intel CPUs, namely Plundervolt [38], VOltpwn [32],
Voltjockey [41], and VoltPillager [15]. More specifically, in an
attack on mbedTLS RSA-4096, a trap density of 2 mitigates
more than 99 % of all attack attempts. Thus, Minefield is a
viable defense against DVFS attacks on Intel SGX enclaves.

We carefully evaluate the performance impact on SGX
enclaves with different Minefield security levels. Both run-
time and memory overhead for the enclave scale up with the
chosen security level. For a trap density of 0.75, which mit-
igates the known DVFS attacks in more than 99 % of the
cases, Minefield incurs an overhead of 148.4 % on protected
SGX enclaves on average. However, in some configurations
Minefield even outperforms RSA redundancy protections,

and the performance of normal-world applications remains

entirely unaffected. Thus, Minefield is a better-suited mitiga-

tion against DVFES attacks on SGX enclaves than hardware-
or microcode-based patches that disable the OCM entirely
and also considers hardware-based undervolting attacks like

VoltPillager [15].

While our evaluation focuses on Intel CPUs, we argue that
the approach is applicable to ARM and AMD CPUs. Hence,
Minefield can also be extended to prevent DVFS attacks on
ARM TrustZone [48] and AMD SEV.

Contributions. The contributions of this work are:

1. We present a novel framework to systematically analyze
the effects of DVFS faults on the entire x86 instruction set.

2. We propose a compiler extension Minefield, the first
software-level defense against all known DVES attacks.

3. We analyze different security levels and show that known
DVES attacks can be mitigated in 99 % of cases.

4. We evaluate the performance overheads of Minefield and
show that the runtime overhead for SGX enclaves is below
150 % while mitigating 99 % of attacks.

QOutline. Section 2 provides background, and Section 3 our

threat model. Section 4 presents the high-level overview and

poses research questions for Section 5. Section 6 details our
implementation. Section 7 evaluates the security and perfor-
mance. Section 8 discusses limitations. Section 9 concludes.

2 Background

In this section, we provide background on Intel SGX and
DVFS, the mechanism behind the attacks we mitigate.

2.1 Intel SGX

Intel Software Guard Extension (SGX) [16,27] is a trusted
execution environment (TEE). To protect code and data on
an untrusted system, an application is split into an untrusted
and a trusted part, which is executed within a so-called SGX
enclave. The enclave’s execution state and memory cannot be
accessed from other processes or the operating system. In the
SGX threat model, only the CPU is trusted. Enclave memory
is encrypted and integrity-protected in DRAM in a dedicated
region called Enclave Page Cache (EPC), mitigating certain
software-level and physical attacks. Thus, SGX even protects
enclaves on systems compromised in software or hardware.
While these protections apply for the enclave’s execution
state (e.g., register values) and memory contents, schedul-
ing, and page-table management are still performed by the
untrusted operating system. Memory-safety violations [35],
race conditions [50], or side channels [7,45] can still lead
to exploitation. Controlled-channel attacks [51], abuse, e.g.,
page-table entries or the APIC timer interrupt to precisely
control the execution flow of a victim application [10, 43,
51]. Transient-execution attacks, e.g., Foreshadow [9], Zom-
bieLoad [44], can precisely leak information from enclaves.

2.2 Power Management (DVFS)

Modern CPUs in smartphones, laptops, and servers, have dif-
ferent energy requirements. Especially mobile devices require
constant energy balancing. Operating systems try to maximize
the battery runtime while still providing sufficient computing
power to handle the user’s tasks. For dynamic adaption to
the user’s needs, modern CPUs implement Dynamic Voltage
and Frequency Scaling (DVFES). DVFS allows changing the
voltage and frequency from privileged software via model-
specific registers (MSR) [27]. However, the overclocking
mailbox (OCM) interface allows to change the alignment
between voltage and frequency, e.g., reduce the operating
voltage at a specific frequency.

Undervolting and overclocking have become important to
personal computer owners, especially for gaming comput-
ers (overclocking) and laptops (undervolting). While system
stability has always been a concern in these communities,
only recently researchers discovered that these interfaces
can be abused for attacks. The first DVFS-based fault at-
tack [48] overclocked an ARM CPU, leading to fault injec-
tion in the TrustZone trusted execution environment. More
recently, several works have explored undervolting as a means
to inject faults into the Intel SGX trusted execution environ-
ment [15,32,38,41]. These works have in common that they
modify the operating voltage during the execution of critical
instructions leading to a computational error propagating into
the result of these instructions. These faulty results lead to
incorrect behavior inside a (correct and bug-free) program.
These results then lead to exposure of secret data from en-
claves, e.g., by faulting index calculations of array accesses.
Faulty results can also occur within cryptographic primitives,
e.g., enabling differential cryptoanalysis on AES-NI.

The main difference between previous works is the way the
operating voltage is changed. VoltJockey [41], VOltpwn [32],
and Plundervolt [38] assume the SGX threat model and use
privileged access to the OCM. These attacks can be mounted
purely from software and only require access to the OCM
MSR. VoltPillager [15], on the other hand, uses additional
hardware to send messages directly to the voltage regulator
unit on the mainboard. Hence, currently, there is no software
mitigation against it, leaving SGX enclaves unprotected.

3 Attacker Model

In this section, we provide the attacker model for Minefield.
We base our attacker model on the previously published at-
tacks [15,32,38,40,41,48] and our own experiments.

Attacker Privileges. Our mitigation, Minefield, works under
the widely adopted SGX threat model and assumes a priv-
ileged attacker who controls the operating system and the
BIOS. As for the hardware, the attacker has direct physical
access to the CPU and the mainboard, enabling the attacker
to mount DVES attacks [15,32,38,40,41,48]. This includes

attacks like VoltPillager [15] intercepting and issuing bus

commands to the onboard voltage regulators circumventing

the OCM. We assume that the faulting behavior of VoltPil-
lager does not differ from the software issued undervolt as

both approaches influence the core voltage (see Section 8).
The enclave does not require the OCM to be disabled by

a given local attestation. Hence, if the enclave is built using
Minefield, the attestation does not have to verify whether the
microcode disabling the undervolting functionality is active.
The attacker does not exploit bugs inside the enclave’s code,
nor the software surrounding the enclave initialization, nor
side-channel attacks to extract secret information from the
enclave. As our defense focuses on fault attacks, we consider
side-channel attacks [43] (e.g., cache attacks on SGX) an
orthogonal problem. However, we discuss the implications of
the mitigation on side-channel robustness in Section
Fault-Injection Capabilities. The attacker can attack the
enclave execution with DVFS attacks and induce faults in-
side the results of machine instructions. We assume that the
attacker controls the environment with the same precision as
in known DVES attacks [15,32,38,40,41,48]. Importantly,
no previous DVFS attacks was able to:

1. precisely target an arbitrary bit inside an instruction result
(but mounted attacks that work with random bit flips),

2. precisely control how many bits flip (but report various
faults from a single bit to multi-byte flips [38]),

3. precisely control the timing (undervolting windows are
multiple microseconds),

4. precisely control which instruction is faulted (i.e., many
instructions are at risk of fault due to the length of the
undervolting window). Certain instructions are found to
be more susceptible to DVFS-based fault injection.

We assume that the attacker has the capabilities from these

previous works since there is currently no indication that the

OCM enables even stronger and more precise attacks.

No single-stepping. In particular, no known attack can com-

bine single-stepping, e.g., using controlled-channel attacks

to target a specific instruction, with a DVFS-based fault at-
tack. Given the significant amounts of code executed during
context switches in controlled-channel attacks, there is rea-
sonable doubt that such an attack can be mounted reliably.

Furthermore, controlled-channel attacks can also be mitigated

using T-SGX [46], entirely preventing single-stepping of SGX

enclaves, or other interrupt-monitoring mechanisms [13,21].

Hence, we assume that the attacker cannot target a single in-

struction this way. We discuss possible mitigations against a

stronger attacker with single-stepping in Section

4 High-Level Overview of Minefield

In this section, we provide a high-level overview of Minefield
and the research questions we have to answer before design-
ing it. The main goal is allowing the operating system to
still control the undervolting of the CPU while ensuring that

Source LLVM Pass Binary Runtime
inst ,»| check ~~ if fault:
. ! . ~ handle()
inst 1 inst ~ .

' ~<_| continue
inst | .| = trap

pa
inst [---- > S inst
inst ‘\‘\» & trap push_ctx
~s trap_inst

inst "‘ inst poppgtx
inst “>|-=-trap =

Figure 1: An overview of Minefield. The compiler part of
Minefield interleaves the instruction stream with trap instruc-
tions and code to detect faults in these instructions. A library
is linked to the enclave handling detected faults at runtime.

enclaves cannot be exploited. Minefield relies on an LLVM
compiler extension to automatically place trap instructions
in the code. Minefield has a security parameter to fine-tune
the application-specific security-performance trade-off based
on the required security guarantees. This makes Minefield an
easily adaptable mitigation without changes in the protected
software and with individual security levels per application.
Figure | shows an overview of Minefield and its compo-
nents. Minefield consists of an LLVM compiler extension
(Section) used to compile SGX enclaves, as well as a
runtime library (Section 6.2) to check for faults and handle
them. The compiler extension compiles unmodified source
code and adds additional trap instructions to the binary. The
trap instruction is an instruction highly susceptible to DVFS
faults. Hence, the result of the trap instruction is used to detect
faults that the enclave can then handle. Designing Minefield
requires answering three research questions as follows.

4.1 Research Questions

While our approach may appear intuitive, a thorough analy-
sis of DVFS-based fault attacks is necessary to ensure that
Minefield is not built upon potentially wrong assumptions.
Furthermore, even if the assumptions as outlined in the threat
model hold, there remains a set of unanswered questions on
the precise attacker capabilities. In the following, we ask three
research questions we need to answer.

RQI: TIs there an instruction highly susceptible to faults,
and if so, how can we find this instruction?

Although all the published attacks [32,38,48] show that
instructions can be faulted based on concrete instances of
instructions, there is no comprehensive analysis on which
instructions can be faulted. VOltpwn [32], Plundervolt [38],
and VoltJockey [41] indicate that multiplications are highly
susceptible to faults on all evaluated systems. However, with-
out a comprehensive analysis, this remains an assumption that
must be further analyzed, as we do in Section

RQ?2: What is the temporal and spatial precision of DVFS-
based fault attacks?

Previous work induced single faults by repeating the target
application until the fault hit the correct instruction [32,38,40,
41]. However, the precision for inducing faults is unknown. In
Section 5.2, we analyze the capabilities of an attacker using
DVES to inject faults. We show that faults cannot be injected
with arbitrary precision. Moreover, we show that there is a
minimum time window between two undervolts.

[RQ3.' How can an enclave react when detecting a fault?]

Detecting a fault is not sufficient. An enclave has to react
to the fault as well. Without replay protection in SGX [37],
attacks could be repeated at a high frequency, even if a fault
is detected. Thus, it is insufficient to simply terminate the
enclave, especially when an attacker can arbitrarily retry in-
ducing a fault. We discuss possible solutions in Section

Based on our analysis in Section 5, we present the design
and implementation of Minefield in Section

S Analysis of Research Questions

In this section, we analyze the capabilities of software-based
fault-injection attacks to answer the research questions asked
in Section 4.1. We exhaustively test the fault susceptibility
of x86 instructions (RQ1) using an automated framework
in Section 5.1. Moreover, we analyze the capabilities of an
attacker to inject faults (RQ2), i.e., the type of fault, as well as
the spatial and temporal precision, in Section 5.2. Finally, we
discuss the handling of detected faults (RQ3) in Section

5.1 RQ1: Instruction Susceptibility to Faults

To determine the fault characteristics, we analyze instructions
of the x86 instruction set during critical undervolting condi-
tions and monitor the faults injected into the results. The goal
is to find a suitable trap instruction with the highest fault sus-
ceptibility that is used by Minefield to detect faults. Therefore,
we implement an analysis framework to determine instruc-
tions that are usable as trap instructions and to get a more
in-depth insight into how undervolting affects instructions.

Design. Our framework is designed to exhaustively test all
unprivileged x86 instructions for multiple levels of undervolt-
ing. The design of our framework is illustrated in Figure

The basic idea is to test an instruction multiple times. In
each test, the instruction is run once in a stable environment
and once in an undervolted environment. For both runs, the
same randomly-generated inputs are chosen. The framework
records the output values for both runs and compares them.
If the output differs, the undervolting led to a fault, and the
instruction, its parameters, and the undervolting level are re-
ported. As outlined, this test is performed multiple times for

Normal Execution

\\\\ ~
ISA -~ @ =
T, __-~ Difference Report

Detection

|
1
\
\
\
\
\
\
¥
I
1
,
B

Instruction List
Undervolted Execution

Figure 2: The framework to find trap instructions. Based

on a machine-readable list of instructions, the framework

executes all unprivileged instructions with random arguments,

once normally and once undervolted. If the output differs, the

instruction is reported as being susceptible to faults.

each instruction, namely with different input parameter values
and undervolting levels and CPU frequencies.

Our test framework stores the bit difference of the expected
result and the faulted result, i.e., the bit location where the
fault occurred. Furthermore, the framework analyzes the type
of the fault, i.e., whether it is a stuck-at-zero or stuck-at-one
fault, or a bit flip. To measure the precision of the fault injec-
tion, we also record the temporal and spatial distance between
two faulted operations. Consequently, our framework can de-
termine the lowest observed temporal and spatial distance
between two faults. This can later be used as a basis to deter-
mine appropriate security levels.

Implementation. To test the instructions defined in the x86
ISA, we use the list from Abel et al. [2], which contains all
x86 instructions, including all ISA extensions, as well as the
input, output, and side effects of the instruction. The frame-
work automatically generates assembly code to parametrize
these instructions. The generated assembly code is placed
inside a loop to repeat the instruction multiple times. It is
then compiled into a dynamic library for the test environ-
ment to load and evaluate. The framework allocates buffers
for the instructions’ state, e.g., registers and flags, and runs
the instruction loop. The instruction in the loop then fills the
buffers with all the changed state produced by the 1 000 000
iterations. Instructions that change the program’s control flow
are handled by setting the jump destination to an instruction
after the jump that sets a flag to indicate that the jump was
either taken or not.

The framework uses the same undervolting mechanism as
Plundervolt [38], VOltpwn [32], and VoltJockey [41], namely
the OCM MSR 0x150. This MSR allows reducing the oper-
ating voltage for a short duration by modifying the voltage
offset. When the undervolted execution is completed, the
nominal voltage is restored, and the results are analyzed for
bit errors. In this step, the framework compares the results of
the undervolted instruction with the normal execution of the
instruction. Each loop iteration is independent of the previous,
so a fault inside one iteration is only visible in the iteration’s
outputs and does not influence other iterations.

To exhaustively test and analyze the instructions, we split
the analysis into three distinct phases. First, we search for
faultable instructions across all the tested CPUs at a fixed fre-
quency and vary the undervolting offset until we see repeated
system freezes or unrecoverable machine check errors. The
framework monitors the response time and restarts over a re-
mote power switch to recover from a system freeze. We store
each reported faulted instruction into a global set of faultable
instructions. Second, we use the set of faultable instructions
to characterize the faulting behavior further. We execute each
faultable instruction on each physical core of each CPU, with
both varying frequency and undervolting offset. This analysis
shows the minimum undervolt needed to observe a fault over
the tested frequencies for each core. To evaluate the effect of
other instructions on the faulting instruction, we tested each
faultable instruction with all the other faultable instructions
and evaluate if the faulting behavior is influenced.

Results. We analyzed 5 Intel CPUs with different microar-
chitectures, each running the same image with Ubuntu 21.04
with Kernel version 5.11. We list the exact CPUs in Table
(Appendix B). For each CPU, we analyze each physical core,
resulting in a total of 26 analyzed cores. Our experiments did
not observe different faulting behavior for the sibling threads,
but we observed differences between the physical cores. In the
instruction finding phase, we executed 1258 instructions and
instruction variants, i.e., same instruction but with different
mnemonics, from the base, SSE, SSE2, FMA, AVX, AVX2,
and AES instruction set, fixed the frequency to 3000 MHz.
This analysis revealed 71 faultable instructions variants with
12 unique instructions. We analyzed the first faulting point
for each of these unique instructions by varying the frequency
from 2000 MHz to 4000 MHz (if available) in 500 MHz steps.
Table 2 (Appendix B) shows the faulting point results.

From our experiment, we found that imul has the highest
fault probability. Table 2 shows the analysis of imul in com-
bination with different instructions. imul does not only fault
well in isolation, but this behavior is also observable when
combined with other instructions. The imul instruction faults
in 92.1 % of all cases when other instructions also fault. For
1.5 % of the faulty instructions we need an additional aesenc
instruction to detect the faults. On one CPU, we did not ob-
serve any faults with AES and hence used a vorpd instruction
to detect the remaining 6.4 % faultable instructions.

Moreover, the imul instruction already suffers from faults
at smaller undervolting offsets. This is in accordance with
recent works [32,38] that focus on imul as well. Hence, imul
is ideal as a trap instruction to monitor if the CPU is driven
near the specification limits. In Section 7.1, we also show that
this property holds when using imul in full programs.

5.2 RQ2: Fault-Injection Capabilities

The security level of Minefield is related to the fault-injection
capabilities of the attacker. Prior work [32,38,40,41] did not

[[. .]
0.2 1 Tmin,1GHz

1 Tmin,3GHz

ul I |
N W' WAL

200 220 240 260 280 300 320 340
Undervolting duration in us

Density

Figure 3: The minimal undervolting time window for two
distinct CPU frequencies.

comprehensively analyze properties, e.g., the precision, of the
faults but simply measured the probability of being able to
fault the target instruction at any point when running it in a
long loop. However, to provide strong security guarantees,
we analyze DVFS-based fault injection in more detail, i.e.,
the fault model [5]. The fault model includes types of errors,
temporal and spatial precision, and the number of faults that
can be injected in one execution [20]. Our fault model is based
on prior work [32,38,40,41] and our own experiments, and
considers spatial and temporal precision and the type of faults.
Temporal and Spatial Precision. Previous work [32, 38,40,
41] did not analyze where faults can be injected. Typically,
faults can occur at a random location [6], or can be induced
for instruction sequences or surgically for single instructions.
So far, no paper has shown that it is possible to induce DVFS
faults with such surgical precision. Our experiments also in-
dicate that targeting a single instruction with DVFS faults is
impractical. Figure 3 shows a histogram for the experimen-
tally measured minimum undervolting time at two different
CPU frequencies. The average undervolting duration at | GHz
is around 220 ps, which are 220 000 cycles. The shortest un-
dervolting duration we observe is 57.8 s, i.e., 57 800 cycles.
Hence, to target a single instruction, an attacker would have
to target a code sequence where the victim instruction is the
only instruction susceptible to a fault within this window.
The minimal length of the undervolting window also influ-
ences the timing of faults. First, the minimal duration of the
undervolting limits the frequency in which an attacker can
induce faults. The CPU requires time to change the voltage.
This is true both for reducing as well as increasing the volt-
age. As shown in Figure 3, the durations are not constant but
subject to variations in the microsecond range, depending on
the CPU frequency and also the CPU itself. We do not have
an explanation for this effect. However, as a consequence,
undervolting precisely the same instruction sequence multi-
ple times is infeasible. When undervolting, there is always a
non-negligible probability that several instructions before or
after the targeted instruction are undervolted as well.
Fault Types. In addition to the precision, it is also important
what types of faults can be injected. Typical fault models
consider stuck-at-zero, stuck-at-one [18], random faults [23],
or flips in one or more bits [19,33]. There are more specialized
fault models, e.g., bits with a bias [39].

We based our analysis of the fault types on our experiments
and the results in prior work [32,38,41]. Table | (Appendix A)
shows the detailed fault characteristics of each observed fault
of our previous analysis. We confirm that a fault can influence
one bit to multiple bytes. Further analysis revealed that we
observe stuck-at-zero faults for instructions executing bitwise
logical operations, i.e., VAND, VXOR, and VOR. However,
the faults of imul and further susceptible instructions behave
randomly, i.e., all observed bit positions can flip in both direc-
tions. Moreover, the affected bits differ between the physical
CPU cores [32]. Hence, for the fault model, we assume that
an attacker can flip between one and all bits of imul’s result
to random values.

There is no difference if an ALU instruction is faulted or
the address generation in a load or store instruction. In all
cases, an attacker cannot choose the location of the bits, the
number of bits, or the values of the bits.

5.3 RQ3: Handling Faults

While detecting a fault is a vital requirement for Minefield,
it is not sufficient for protecting an enclave if the fault is not
handled correctly. Hence, an important part of Minefield is
the fault handler. We identified two different strategies for
handling faults such that they cannot be exploited.

Cancel. The straightforward approach is to stop further exe-
cution as soon as a fault is detected. Aborting ensures that no
further instructions are executed that potentially consume the
faulted data. An abort handler does not require any change to
the enclave code. To abort the enclave, the handler can either
execute an illegal instruction, e.g., ud2, or simply stop exe-
cution by entering an endless loop. Note that Minefield does
not suffer from false positives (cf. Section 7.1), i.e., enclave
execution is never wrongly aborted.

While abort handlers are straightforward, they may open
new attack surface: An attacker could repeat the attack at
a high frequency to increase the chance of bypassing our
detection in one of the runs. Potentially, by knowing where
the detection was triggered, the attacker might even improve
the attack further. Without secure persistent storage and replay
protection, the enclave developer must provide additional
infrastructure to prevent the enclave from being started again.
The SGX ecosystem already provides the EPID attestation
method [31], allowing to identify a specific CPU, practically
solving the replay protection problem if a remote trusted third
party is available. We discuss different solutions in Section

One possibility to reduce the frequency of restarts is to use
monotonic counters [24]. These counters can only be read
and incremented and are persistent across enclave restarts
and also system restarts. Hence, by incrementing the counter
on a fault, the enclave can track the number of total faults
and decide not to start when a certain number of faults was
detected. However, even with the counters, it is not possible
to entirely prevent arbitrary execution of the enclave as the

counters can be destroyed by re-installing the Intel PSW or by
removing the BIOS battery [37]. Still, this at least slows down
an attacker and might make an attack infeasible. We further
discuss the availability of monotonic counters in Section

Retry. A different approach is to try to “hide” the fault and
prevent its weaponization by restoring the state before the
fault and repeating the instruction. The retry handling is more
complex, as instructions are not generally idempotent. Thus,
the retry handler cannot simply re-execute the instruction be-
fore the fault or the current basic block. To use a retry handler,
a developer has to define checkpoints in the enclave code to
which a fault handler can safely jump back. Inside the retry
handler, a developer can then choose to which checkpoint
to return based on where the fault was detected. The imple-
mentation of such checkpoints could make use of the already
existing set jmp and longjmp C functions.

The retry handler has the advantage that the enclave can
continue execution in the presence of faults. Thus, this ap-
proach has similar advantages to multiple executions with a
majority vote [5, 14], without the disadvantage of always exe-
cuting code multiple times. The obvious disadvantage is that
the developer has to take care of checkpoints at which execu-
tion can be retried. Moreover, the retry handler might provide
an attacker with valuable information. As an attacker can
monitor the execution time of the enclave, an attacker might
learn that the fault was successfully injected. However, an
attacker only learns that the fault definitely hit a trap instruc-
tion and not if the fault hit the target instruction. While this
cannot be weaponized directly, it introduces a side channel
(see Section 8).

5.4 Results

Based on the results from analyzing the research questions,
we provide a solid fault model for software-based DVFS fault
attacks. We show that there are indeed instructions that are
more susceptible to faults than others. We confirm that imul
instruction exploited in prior work [38] is indeed highly sus-
ceptible to faults, making it a perfect choice for Minefield’s
trap instruction. Furthermore, our analysis shows that an at-
tacker cannot surgically induce faults. Both the temporal and
spatial precision are limited by the minimal undervolting win-
dow of multiple microseconds. Hence, next to the instruction
targeted by an attacker, there are always other instructions
that are executed in the undervolted state as well. We can use
this non-uniformity to place instructions with a higher chance
to attract faults as trap instructions and enforce that the results
of these trap instructions are not altered or faulted. Thus, these
trap instructions enable us to protect the real instructions with
a relatively simple mechanism against undervolting attacks.
Depending on the number of inserted instructions, any in-
duced fault is likely to also fault at least one of these inserted
instructions.

6 Implementation of Minefield

In this section, we discuss the implementation details of Mine-
field. The implementation consists of two parts. The first part
is a configurable LLVM compiler extension (Section 6.1) for
adding additional trap instruction to enclave code at compile
time. The second part is the runtime environment integrated
into the enclave for detecting and handling induced faults
(Section 6.2). Finally, Section 6.3 describes how the changes
are integrated into the SGX toolchain.

6.1 Compiler Extension

The compiler extension implements a Machine Function Pass
inside the LLVM 11 [34] backend. The Machine Function
Pass allows inspecting each program’s function on an x86
machine instruction level. Implementing Minefield in the
backend ensures that it is language agnostic, as long as there
is an LLVM frontend for the desired language. The compiler
extension is responsible for placing trap instructions and gen-
erating the code that checks whether a fault was induced.
Trap Instructions. Based on our fault susceptibility analysis
and the fault model (cf. Section 5), we select imul as a default
trap instruction, as it has the highest probability to fault when
undervolted on our tested systems. In addition to this default
trap instruction, a developer can also provide a different trap
instruction to the compiler extension, e.g., a pair for AES
and multiplication instruction. To keep track of the current
state of our imul instruction, we use two distinct instances of
the trap that only differ in the register operand. By placing
both of these instances in alternating order, we ensure that
the values in the two registers are at most one execution of
the trap instruction apart. This placement is independent of
the chosen trap instruction. The compiler also ensures that
the basic block contains an even number of traps by adding
an additional trap if necessary. This ensures that the registers
must always have the same content at the start of a basic block,
eliminating the need to store additional information about the
current correct value as Figure 4b shows.

Placing Trap Instructions. Generally, trap instructions are
placed between existing instructions, as illustrated in Figure
However, several practical obstacles have to be handled by
the compiler. The trap instruction modifies the content of a
register. Hence, the compiler has to know that the register
used in the trap instruction is clobbered. Moreover, both the
trap instruction and the code for detecting fault might modify
the CPU flags, i.e., the rflags register.

In addition to the problems of inserting a trap itself, we also
have to decide when to insert a trap instruction. Inserting more
traps leads to better security guarantees, while it impacts the
performance negatively. We provide tuning parameters to find
a trade-off between the performance and the provided security
by the mitigation. We denote this parameter as the placement
density. This parameter defines the ratio of trap instructions

imul $11, input(%rip), %rax cmp %$rl2, %rl3

cmp %rax, limit (%$rip) jne __abort

ja L1 imul _ factor(%rip), %rl2
imul $11, input (%rip), %rax
imul _ factor(%rip), %rl3
cmp $rax, limit ($rip)
pushf
imul _ factor(%rip), %rl3
imul _ factor(%rip), %rl2
popf
ja L1

(a) unmodified (b) modified

Figure 4: Figure 4a shows the unprotected assembly instruc-
tions while Figure 4b shows the trap instruction sequence
generated by Minefield with a placement density of 1.

entry: ----% function:
__check 1 __check
__trap | .-
function()r--' -1 ret
__trap = k----- '
cmp —_—
jnz f------- 3 loop: ---5
— __check !
——— __trap H
end: ---s s H
__check ' cmp H
__trap i jnz p---s
e ! __trap
""" Jmp

Figure 5: Traps are inserted between normal instructions. To
ensure the correctness of comparisons, no trap instruction is
inserted directly between comparison and conditional jump
but only at the two jump destinations. Trap instructions are
checked at the beginning of each basic block.

to existing instructions, e.g., a density of 0 means that no
trap instruction is placed, a density of 0.5 places a trap after
every second instruction. If this parameter is chosen higher
than one, we place multiple trap instructions after the original
instruction. We also ensure that at least two trap instructions
are placed inside a basic block such that the mitigation also
works if the placement density is low.

As the compiler extension is implemented in the backend,
inserting the trap instructions is straightforward. The compiler
simply iterates over each of the instructions inside the basic
blocks and can directly insert new instructions.

Handling Register Clobbering. If the placement density is
greater or equal to 1, Minefield places a trap instruction basi-
cally after every instruction. As loading and storing a value
from and to memory after every executed instruction incurs
a high overhead, the trap instead operates solely on values
stored registers. Minefield dedicates two general-purpose reg-
isters to fault checking to minimize the performance impact.
For the general-purpose registers, we use R12 and R13. These
registers have no special use in the System V Application
Binary Interface. Both registers are defined to be callee-saved.
Thus, no other function can change the content of the regis-
ters. As a result, Minefield even supports calling functions that
have not been compiled with the compiler extension, making
it fully backward compatible with existing code. Reserving a

general-purpose register inside the LLVM compiler infrastruc-
ture already excludes the register from the complete pipeline.
Thus, no additional precautions are necessary.

In addition to the modification of the register, a trap can
also modify the rflags register [26], thus changing the archi-
tectural state and, with that, potentially the semantics of the
original program. To prevent saving and restoring the flags
all the time, we rely on the liveness analysis of LLVM. The
LLVM infrastructure records which registers are currently
alive and in use and which instruction consumes a given reg-
ister (variable liveness analysis). Therefore, we can monitor
when the flags register is in use. Typically, the content of
the flag register is only relevant between a comparison and
a conditional operation, e.g., a conditional jump. Minefield
can simply omit the placement of trap instructions between
an instruction that modifies and an instruction that acts on the
flags register. This approach increases the performance with-
out significantly reducing the security guarantees, as faults
are checked in any case at the beginning of a basic block. We
evaluate the correctness of this approach in Section

Without relying on the liveness, the rflags would have to
be saved before and restored after executing the trap. How-
ever, saving and restoring the state is expensive, as it involves
pushing the flags to the stack (pushf) and restoring it from
the stack afterward (popf). While this ensures the correctness
of the generated code, it adds a non-negligible performance
overhead to the fault checks. For testing purposes, we pro-
vide an additional compiler option to fall back to this slower
approach and not use the liveness analysis of LLVM.
Fault-detection Code. To detect faults in the trap instruction,
the compiler extension creates code for the fault detection.
Minefield supports two ways of checking whether a fault
occurred in a trap instruction. This check can either be im-
mediate, i.e., the detection code is inserted after every trap
instruction. Alternatively, the check can be lazy, i.e., the check
is only performed at the start of a basic block. Nevertheless,
despite the used method, a check is always performed at the
basic block’s beginning by simply comparing R12 and R13.

Both approaches have their advantages and disadvantages.
Immediate checking results in a larger binary size and also
a larger performance overhead. However, with immediate
checking, the time between a fault and the detection of the
fault is minimized. When using lazy checking, the trap instruc-
tion is verified at the beginning of each basic block. Hence,
with lazy checking, the number of checks is reduced, increas-
ing the performance but potentially increasing the time win-
dow in which a fault could be exploited.

Immediate checking seems intuitive. However, for instruc-
tions that only operate on registers and do not perform a
memory access, immediate checking does not provide addi-
tional security since the faulted value is not visible outside
of the registers of the CPU. With this observation, we can
extend the immediate checking method to only check the trap
instructions right before either a load or a store is executed.

This extension ensures that neither the load’s address nor the
store’s address or data was previously faulted.

Basic Blocks and Control Flow Changes. There are two
main reasons we chose to verify the trap instructions at the
beginning of basic blocks, as shown in Figure 5. First, as per
definition, control flow changes can only target the beginning
of a basic block and never target instructions inside the basic
block. We can ensure that checks placed at the beginning of
basic blocks are always executed, regardless of the control
flow conditions [1,47]. Second, a basic block has one entry
point but can have multiple exit points. A basic block can be
exited by either calling a different function, by returning, or
by jumping to a different basic block. Therefore, checking all
the possible exit paths requires more checks that impact the
performance without providing any benefits. Nevertheless, we
still have to perform checks before return instructions since
in LLVM, call instructions can be placed inside basic blocks.

6.2 Runtime Fault Handling

The second part of Minefield is the runtime library, statically
linked into the enclave, which handles the detected fault. By
default, an abort-handler callback is called when a fault is
detected. The implementation of the actual fault handler is the
responsibility of the enclave developer. This allows maximum
flexibility for the developer, as depending on the threat model,
there are different reactions to a detected fault.

Minefield also provides two default fault handlers that can
be used in many scenarios. These fault handlers can either
retry or cancel the execution of the enclave when a fault is
detected, as outlined in Section

6.2.1 Monitoring Controlled-Channel Attacks

As already described in the attacker model (cf. Section 3),
there is no combined controlled-channel DVFES fault attack
and due to the significant amount of code, it is unlikely that
such an attack could be implemented reliably. Controlled-
channel attack frameworks, such as sgx-step [10] enable at-
tackers to essentially single-step (and zero-step) an enclave.
Thus, the attacker can step an enclave precisely to a single
target instruction inside an enclave. If this technique could be
combined with a DVFS attack, it could bypass our defense.
There is a strong indication that such a combination cannot
be mounted reliably, i.e., the system freezes instead because
of the substantial amount of micro-code executed during en-
clave entry. We also empirically validated this in our own
experiments. When undervolting during enclave entry, the
system easily freezes while the CPU restores the enclave state.
We also emphasize that appropriate countermeasures against
controlled-channel attacks (including single-stepping of SGX
enclaves) already exist, e.g., T-SGX by Shih et al. [46].

Integrated mitigation. As T-SGX would incur additional
overhead, we also propose a more integrated solution to pre-

vent single-stepping-assisted DVFS fault attacks. Similar to
previous work [13,21], we can utilize the Save State Area
(SSA) of the enclave to monitor any interruptions. When an
enclave gets interrupted and the control flow is passed to the
interrupt handler, the state of the enclave is stored inside the
SSA of the enclave, including all the registers and additional
enclave state. We can write a magic value to the position of
the enclave RIP field inside the SSA and later check if this
magic is still present or if it was overwritten by the CPU when
exiting the enclave asynchronously. Frequent interruptions
can be handled as described in previous works [13,21].

6.3 Toolchain Integration

At the time of writing, Intel does not officially support LLVM
to build SGX enclaves with their SGX SDK. Compiling the
SDK with clang instead of gcc fails due to gec-specific fea-
tures used in the SDK. Hence, to use the SDK for evaluation
with Minefield, we had to apply small changes to the SDK
version 2.10 to make it compatible to LLVM.

We only compile the trusted part of the SGX SDK with
Minefield. This is sufficient, as only the trusted part is an
attack target. The untrusted part is under the control of the
attacker. Thus, there is no benefit in protecting this part. The
protected part is responsible for the enclave initialization, the
enclave entry calls, and the enclave exits. As a small part
of the enclave entry and exit code is written in assembly, it
needs to be manually patched, as the current prototype of
Minefield does not support assembly files. In addition to the
manual patching, we adopted the enclave entry function to
set up the registers required for Minefield. There is no need
for additional modifications inside the source code.

7 Evaluation

In this section, we evaluate the security (Section
mance (Section 7.2), and correctness (Section 7.3).

), perfor-

7.1 Security

We evaluate the security of Minefield by evaluating the prob-
ability to detect induced faults for two different applications,
a victim highly susceptible to fault attacks as used by Mur-
dock et al. [38], as well as a practical application based on
mbedTLS. In both scenarios, we evaluate different undervolt-
ing levels and placement densities between 0 and 2 and show
that Minefield can successfully protect these applications.

Setup. We use SGX enclaves built with Minefield. All ex-
periments are conducted on an Intel Core i5-8265U running
Ubuntu 20.04.1 LTS. We focus on two different enclaves, one

1Our changes to the SDK, the source of Minefield, and the test enclaves
are provided at: https://github.com/iaik/minefield.

https://github.com/iaik/minefield

—0— AV_171y — 8= AV_170,y —— AV_173,y

0.9
0.8

0.7 | | | | | | |
0.25 0.5 0.7 1 125 15 1.7 2

Placement Density
[[

Recall

0.95

0.9

025 05 075 1
Placement Density

Mitigation Rate

\ \ \ \
1.25 1.5 1.75 2

Figure 6: The recall over the placement density for several
undervolting offsets for the imul experiment.

enclave containing the Plundervolt multiplication proof-of-
concept [38], and another enclave running mbedTLS [3]. As
an abort handler, we use a function that reports faults without
terminating the applications.

As a detection metric, we use the recall of Minefield. In
our setup, the recall is calculated by dividing the number of
experiments where the target was successfully faulted and
the mitigation detected the fault (F&D) by the number of the
experiments where the target was faulted (F). The recall is
bounded between zero and one, where zero means that no
fault was detected and one that all faults were detected. We
use the recall instead of the F-score as a security metric since
the precision of Minefield is consistently one. This is because
the detection cannot observe false negatives. The check is
entirely deterministic. Thus, it is not possible to detect a fault
although there was no fault. Moreover, if we observe a fault
inside a trap instruction, the system is already driven near
the specification limits. Hence, even if the fault is only in a
trap instruction, the execution of the enclave is no longer safe
and should be terminated. As a consequence, there is no case
where the trap instruction triggers without the system being
compromised. For the two enclaves, we evaluate the recall
for different voltage offsets and vary the placement density
between 0 and 2 (cf. Section 6.1).

7.1.1 Highly-susceptible Toy Victim

In the first scenario, we use a toy application inspired by the
Plundervolt proof of concept [38]. In this application, we
target four imul instructions executed 30 720 times inside a
tight loop. The multiplications use the result of the previous
iteration as input. Thus, any fault induced in a multiplication
propagates to the final iteration’s result. To detect a fault, it is
sufficient to compare the final result to the ground truth. The

10

—0—AV_j95,,y —8— AV_j96,v

0.8

Recall

0.6 -

| |
025 0.5 0.75 1

|
1.25 1.5 175 2
Placement Density

Figure 7: The recall over the placement density for several
undervolting offsets for the mbedTLS experiment.

fault propagation has the advantage that no additional fault-
checking code has to be inserted. This toy application has a
high probability that a fault can be induced. Moreover, every
fault is effective, leading to a change in the final result. Hence,
from a defender’s perspective, this application is close to the
worst case, as nearly every instruction has to be protected.

Figure 6 shows the recall when compiling this code with
Minefield and inducing faults. We test different undervolting
levels for which the rest of the system is still stable. We
observe that the undervolting level itself does not significantly
impact the probability of inducing a fault. As expected, the
recall increases with the placement density of Minefield.

With a placement density of 0.5, we already recognize 80 %
of the faults. If we further increase the placement density to
1, we can detect nearly all the faults for the different voltage
offsets. We also observed that on one of our cores, the re-
call started to decline when increasing the placement density
above 1.25. However, this does not directly correlate with
the security. In that case, the overall probability of inducing
a fault decreased drastically. Hence, we were rarely able to
induce a fault at all. To better visualize this effect, we show in
Figure 6 the mitigation rate, i.e., the inverse of the probability
that an attacker faults the target instruction without the mit-
igation detecting it. For all placement densities above 0.75,
the mitigation rate never dropped below 95 %.

This toy application shows that even if most instructions are
susceptible to faults, and any fault is exploitable, Minefield
can protect an application. Especially with a high placement
density, there is a nearly arbitrarily adjustable trade-off be-
tween performance impact and security guarantees.

7.1.2 Real-world Victim

The second scenario uses a more realistic application. We
protect mbedTLS [3] version 2.13 with Minefield. Due to its
small codebase and simplicity, it can be easily used inside
SGX enclaves [52]. As a constant target for side-channel
attacks, mbedTLS also provides side-channel resilient imple-
mentations of the provided cryptographic algorithms [4].
For our evaluation, we focus on the RSA signature algo-
rithm of mbedTLS. As shown in previous work [38], a fault

during the signing can be sufficient to recover the private key.
Hence, for the evaluation, we focus on the underlying binary
modulo exponentiation function mbedtls_mpi_exp_mod,
which is directly used inside the library’s RSA algorithm.
We choose the input parameters for the function to repre-
sent a 4096-bit key. After the execution of the algorithm,
we check whether the result of the function was faulted and
also determine whether Minefield detected the fault. For each
placement density, we perform 2000 encryptions. The voltage
is reduced for each of these 2000 encryptions before entering
the function and restored after the return from the encryption.

Figure 7 shows the recall for the mbedTLS experiment.
We observe a relatively high detection rate of 90 % with a
low placement density of 0.75 across two voltage offsets of
—195mV, i.e., the first offset where we observe faults and
—196 mV, i.e., the last offset where the system did not freeze.
Compared to the toy application, the undervolting offset of
the mbedTLS example is lower since the executed codebase
is more extensive.

7.1.3 Results

For both our victims, Minefield reliably detects induced faults.
Especially for higher placement densities, the probability of
faulting a target instruction without triggering Minefield is
very low. While the level of undervolting does not have a
huge impact, we observe a trend that the mitigation performs
slightly better if the CPU is driven more into critical condi-
tions, i.e., if we undervolt the CPU more.

For the analysis, we do not consider faults detected by
Minefield that had no effect on the victim computations. In a
real scenario, it is also desirable that these faults trigger the
enclave’s abort or retry mechanic, as a stable execution cannot
be guaranteed. During our experiments, we observed on aver-
age 10 times more faults inside the trap instructions compared
to the target imul instruction. This result also supports our
choice for using imul as the default trap instruction.

7.2 Performance of Minefield

For the performance evaluation of Minefield, we evaluate
three different metrics: the runtime overhead (Section),
the increase in code size (Section), as well as the one-
time compile-time overhead (Section).

7.2.1 Runtime Evaluation

To evaluate the performance, we use the well-known SGX
nbench benchmark suite for SGX. Additionally, we also eval-
uate the performance impact on mbedTLS, as we used this
library for the security benchmark as well (see Section 7.1).
For mbedTLS, we also compare the performance overhead of
Minefield to the integrated fault-mitigation technique.

11

SGX nbench. SGX nbench [49] is an adoption of the tradi-
tional nbench benchmark suite for SGX enclaves. The bench-
marks focus on classical benchmarks executed inside the
enclave environment. We use this benchmark to evaluate the
performance impact on actual performance code mitigated
with Minefield including the SGX SDK. Each of the bench-
marks is executed 25 times over a total duration of 2h and
51 min. Figure & shows an average overhead for a placement
density 1 of 191.51 %. The overhead linearly increases to
400.12 % for a placement density of 2. In all cases, the stan-
dard deviation was below 1 %.
mbedTLS. mbedTLS [3] already hardens the software im-
plementation of its RSA algorithm against fault attacks. The
mbedtls_rsa_private function used for encrypting data
with the RSA key decrypts the complete ciphertext after en-
cryption and compares if the decrypted message matches the
provided function’s input message. This is only possible since
mbedTLS stores also the public key inside the private context.
With the built-in fault check, the RSA implementation takes
on average 13.9 ms (n = 1000, 6; = 0.064) for one encryption
with a 2048-bit key, where the public key is large, i.e., it only
has 6 leading zeros. When disabling the internal fault check,
the same encryption takes on average 6.9 ms (n = 1000, o3
= 0.045). Hence, the runtime overhead of the internal check
of mbedTLS is 100.99 %. When using the same parameters
with a small public key, i.e., the key has 2031 leading zeros,
the overhead decreases to 1.13 %. For comparison with Mine-
field, we compile the version without the internal check with
Minefield. Figure 9 shows the performance comparison over
different placement densities. For large public keys (6 lead-
ing zeros), Minefield always performs better, regardless of
the placement density. With a placement density of 0.75, we
increase the performance by 71.42 % for full-length public
keys compared to the internal verification of mbedTLS. We
show in Section that with a placement density of 0.75
we already achieve a recall of 90 %. For small public keys
(2031 leading zeros) and at the same placement density, we
only decrease the performance by 17.23 % compared to the
internal verification of mbedTLS.

7.2.2 Code-Size Evaluation

As Minefield inserts additional code into an application, we
compare the size of binaries created with Minefield and with
the same compiler without any placed trap instructions. For
evaluating the code size, we use the benchmarks used to eval-
uate the runtime overhead in Section . The code size is
especially relevant for SGX, as the amount of physical mem-
ory usable by SGX is limited for all enclaves running on the
system. We further discuss the memory impact in Section &.

The code size is increased by the constant size of the run-
time library linked to the enclave code (cf. Section 6.2). Ad-
ditionally, there is a variable increase based on the number
of instructions in the enclave and the placement density. Fig-

[0 Numeric Sort [[1dea] [Assignment 0 B Neural Net B LU Decomposition

Bitfield [[String Sort [0 Huffman

— =
o — <
® 1,000 | _ 2 = -
= Te)) o I3} ol
= I "3 S o "3
= o ot - o A =0 b —o%e
S 500 [—_———O A A RS 4 N 2ox PRt =S i
£ = =8 S0 oSmaw] —Hoesi ol ~RSRS Srrae TR
B x"f‘oN oS r;fl\ﬁ-('(‘ Bl y-_:‘zg: by ov_ggl’mﬁ o] — Hafad Faa ._‘F,NN
8 Arenery sa%esinl Sntaenll ZDosmallll 2l l 'l | UD“ ol
0 :.EID__ ol oldomm D DDD.. | Dl. O Dl o D D D
I I I I I I
0.25 0.5 0.75 1 1 .25 1.5 1 .75 2

Placement Density

Figure 8: The performance overhead of Minefield for the sgx-nbench benchmark over multiple placement densities. We observe

a linear overhead with increasing placement density.

“ [l D Long public key [l [Short public key

= Vr mo g 0 [[
5 0= ® o ,
jarrrereeds
o L A A B

0 025 05 075 1 1.25

Placement Density

1.5 175 2

Figure 9: The performance comparison between the mbedTLS
RSA verification and Minefield-protected version.

[l 0 sGx-bench [] 1 SGX-tcxx I M SGX nbench
[0 mbedTLS BB SGX-trts SGX-tstdc
S] I T
£ 300 | |
el
5 200 H |
bt sl il || |
0.5 1.5 2

Placement Density

Figure 10: The increase of the code size for the various bench-
marks over the placement density parameter of Minefield.

ure 10 shows the code size increasing over the placement
density parameter for the SGX nbench, mbedTLS and SGX-
bench benchmarks. In addition, we also show the increase
in code size for trusted SGX SDK components such as the
runtime system, the C library, and the C++ library.

As expected, we observe a nearly linear increase of the
code size when using Minefield. However, even for large
applications such as SGX nbench, protected with a placement
density of 1, the absolute increase is only 274.5 kB.

7.2.3 Compile-Time Evaluation

We analyze the impact on the compile time that Minefield
has on enclaves. As a baseline, we compile the benchmarks
without any mitigations enabled. We compare the compile
time for different placement densities to this baseline.

12

| [l 0 Compile Time
o |

T T T T T T T T
025 05 0.75 1 125 15

Placement Density

1.5

0.5

Overhead in %

Figure 11: The compile-time increase for the various bench-
marks over the placement density parameter of Minefield.

Figure | | shows the average increase in compile time for
the benchmarks. The placement density does not have a signif-
icant impact on the compile time. For a placement density of
0.5, the overhead is negligible, with on average around 0.78 %.
Even for a placement density of 2, the overhead is only around
1.6 %, which amounts to less than 0.5 s for mbedTLS.

We conclude that the overhead on the compilation time is
negligible, especially as this is a one-time overhead for the
developer. This small overhead also makes it feasible to use
Minefield in the development process, and not only for the
final compilation of an SGX enclave.

7.3 Correctness of Minefield

In addition to the performance and security evaluation, we
also verify that our Minefield prototype does not introduce
any correctness problems.

Compiler Correctness. We explicitly tested the compiler
by running a C compiler test suite [12] to ensure that we
did not introduce any bugs. The test suite confirmed that
the compiler changes did not have any adverse effect on the
correctness. We also confirmed that mbedTLS works correctly
with Minefield by running it without undervolting both in
SGX and as a native application. For SGX, the SGX-nbench
benchmark verifies the correctness of the computed results in
addition to the performance. We did not encounter any errors.
Integration Correctness. In addition to the correctness of
the compiler itself, we also evaluated the correctness of our
integration with the SGX SDK. We relied on SGX-bench [42]

to test the enclave interactions. SGX-bench is a small test suite
for SGX enclaves to determine the performance of, e.g., en-
clave entries, enclave initialization, and enclave ocalls. We did
not run into any bugs or crashes when running the test cases,
showing that Minefield successfully works with the SGX
SDK. Moreover, running our test enclaves with mbedTLS
without undervolting also showed that the integration works.

8 Discussion and Limitations

Current Mitigations. The currently active countermeasure
against undervolting attacks on SGX enclaves prohibits the
user from applying voltage offsets to the CPU. This removes
a feature to gain additional performance or increase thermal
thresholds against throttling. In addition, software-based fault
mitigations either handwritten in cryptographic software or
per compiler extension often focus on calculating results mul-
tiple times to check the correctness of the results against
each other. While these mitigations provide a high level of
security against fault attacks, they induce additional software
complexity and performance overhead based on the type of
instructions protected.
Hardware Undervolting. Starting from the 11th generation,
Intel CPUs reuse fully integrated voltage regulator (FIVR)
designs, previously abandoned after the 4th generation [11].
CPUs without a FIVR design expose the voltage regulators,
allowing an attacker within our threat model (cf. Section 3)
to mount VoltPillager [15] attacks. The voltage regulators are
connected to a bus that receives commands from the CPU.
VoltPillager directly sends these commands over the bus by-
passing the CPU and the OCM. Although we performed the
instruction analysis via the OCM, we argue that the observed
fault behavior is independent of how the undervolt is issued.
Therefore, we assume that Minefield is also applicable against
hardware-based undervolting like VoltPillager, where the cur-
rent mitigation to disable the OCM is ineffective.
Persistent Failing. Li et al. [36] show that AMD SEV’s
“security-by-crash” is exploitable, similarly using Minefield
without hindering an attacker from arbitrarily often restart-
ing an enclave might result in an undetected fault. Intel SGX
does not support any local replay-protected persistent state
that is also protected against an attacker with physical access.
Hence, an enclave cannot securely store any data that could be
used to detect how often the enclave has already been started,
without using a trusted remote server. Thus, an attacker can
always restart an enclave arbitrarily often. Even when rely-
ing on the monotonic counters [24] for counting restarts, an
attacker can, e.g., remove the BIOS battery to destroy the
counter, effectively resetting it [37]. The support for mono-
tonic counters was discontinued in the Linux SGX-SDK [29].
However, the latest available documentation of the Windows
SGX-SDK [28] (March 2020) still lists these functions.

If a trusted remote server is available, we can either imple-
ment the replay protection with Intel’s EPID scheme or other

13

rollback preventions. Intel’s EPID group signature remote
attestation scheme [31] can verify that enclaves are part of a
certain CPU group. Moreover, EPID supports the named-base
mode that allows linking two signatures, i.e., the verifier can
determine if two signatures originate from the same signer.
Therefore, when using the named-base mode, the verifier can
deny the data exchange with enclaves that repeatedly restart,
observe faults, or do not terminate. Matetic et al. [37] present a
rollback prevention for persistent state based on a distributed
system. Hence, by relying on such a technique, Minefield
could also implement persistent failing without requiring any
hardware change. This would restrict an attacker to only a
developer-defined number of induced faults per physical CPU.
Performance and Memory Overhead. The performance
and memory overhead of Minefield is adjustable by the place-
ment density (cf. Section 6.1) and affects only occasionally
running SGX workloads, allowing the remaining system to
benefit from undervolting and the resulting performance and
energy gains. Unfortunately, adjusting the placement density
also affects the security guarantees. We propose the following
extensions for future work to reduce Minefield’s overhead
without affecting security.

First, Table 2 shows a margin between imul faults and
faults of different instructions. Minefield can utilize this mar-
gin by protecting regular imul instructions with additional
redundancy or replacing them with functional equivalents.
Due to this margin, the trap imul instructions observes sub-
stantially more faults at these lower voltages than the other
susceptible instructions. Thus, increasing the detection ca-
pabilities retaining the same security guarantees with lower
placement densities, improving performance.

Second, we can reduce the impact on branch prediction by
replacing the check’s cmp and jne instructions with instruc-
tions generating a GP-fault if Minefield detects a fault. We
propose using xor to calculate the registers’ difference fol-
lowed by popcount giving the number of bit errors. Adding
this number to the higher 16 bit of a 64 bit address makes the
address non-canonical if a fault was detected. When accessing
a non-canonical address, the CPU raises a GP-fault causing
an asynchronous enclave exit [27]. The enclave can only be
resumed at the internal signal handler, stopping further faulty
code execution [24].

Finally, the SGX driver ensures that enclaves that exceed
the available EPC memory (usually 128 MB) can execute
without limitations by swapping EPC pages [16]. Accessing a
non-present EPC page introduces a latency of 13 103 cycles (n
= 1000000, 6; = 0.925) to swap it back into the EPC on our
Intel 15-8265U. We analyzed Intel and Synaptics production
enclaves and found that their enclave sizes are below 3 MB.
Furthermore, Intel’s Ice Lake CPUs increase the available
EPC memory up to 1 TB [30]. Therefore, we find Minefield’s
memory overhead for these enclaves tolerable.

Side Channels. Minefield does not protect against classical
side-channel attacks on enclaves. Side channels are orthog-

onal to fault attacks and are thus out of scope for Minefield.
Intel sees it as the developers responsibility to ensure that
their code is free of side channels [25]. Importantly, Minefield
does not introduce any new or additional side channels, as
we decouple the instructions responsible for fault detection
from the actual data processed by the enclave. However, if the
enclave is already susceptible to side-channel attacks, Mine-
field might amplify the side-channel leakage. In the worst
case, this can enable the exploitation of side channels that
were previously considered not exploitable. For example, the
inserted trap instructions might change a secret-dependent
control flow within a cache line to a secret-dependent control
flow on a cache line or even cache set granularity. Hence, for
complete side-channel protection, developers have to ensure
that all algorithms handling secrets are data oblivious [25].
Other Architectures. The idea of Minefield is not restricted
to any given architecture and has two requirements. First, the
architecture needs an instruction that is more susceptible to
undervolting faults than others. Second, all targets that can be
faulted must be compilable with Minefield. If the architecture
meets these requirements, Minefield can probabilistically pro-
tect code running on the system. The performance depends
on all the susceptible instructions of that architecture.
Minefield is also applicable to other TEE alternatives such
as ARM TrustZone and AMD SEV. Qiu et al. [40] target ARM
TrustZone with software undervolting faults and exploit faults
in AES and RSA computations. Minefield could protect the
target AES and RSA code if we port the compiler extension
and the runtime library. Due to AMD’s x86 instruction set,
Minefield is directly applicable to AMD SEV workloads. As
of writing this paper, there are no known software undervolt-
ing attacks against AMD. However, Buhren et al. [8] exploit
AMD SEV by inducing hardware undervolting faults to com-
promise the secure coprocessor responsible for transparent
encryption. In this case, the attack compromises AMD SEV
by exploiting code not protected by Minefield, breaking the
second requirement and rendering the defense ineffective.

9 Conclusion

In this paper, we presented Minefield, the first software-level
defense against DVFS attacks. We systematically analyze
DVES attacks and observe a timing gap of at least 57.8 s
between every OCM transition, leading to random faults over
a sequence of at least 57 thousand cycles. The trap instruc-
tions Minefield places in the victim code during compilation
are highly susceptible to faults. Our evaluation showed that
a density of 0.75 traps per instruction, i.e., 1-2 traps after ev-
ery second instruction reliably mitigates the currently known
DVFS attacks on Intel CPUs, namely Plundervolt, VOltpwn,
VoltJockey, and VoltPillager. Minefield allows fine-grained
selection of the performance-security tradeoff. For this strong
security level, we observe overheads of 94.4 % on average on
protected SGX enclaves. The performance of the remainder

14

of the system is entirely unaffected. Thus, we conclude that
Minefield is an important alternative to a solution in hard-
ware or microcode that comes with the prohibitive effect of
disabling the OCM entirely.

Acknowledgments

We thank the anonymous reviewers, especially our shepherd,
Dave Tian, for their guidance, comments and suggestions.
Additional funding was provided by a generous gift from
Amazon. Any opinions, findings, conclusions, or recommen-
dations expressed in this paper are those of the authors and
do not necessarily reflect the views of the funding parties.

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Vijay Atluri, Catherine A. Meadows, and Ari Juels, ed-
itors, Proceedings of the 12th ACM Conference on Computer and Com-
munications Security, CCS 2005, Alexandria, VA, USA, November 7-11,
2005, pages 340-353. ACM, 2005. doi:10.1145/1102120.1102165.

[2

—

Andreas Abel and Jan Reineke. uops.info: Characterizing latency,
throughput, and port usage of instructions on intel microarchitectures.
In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck,
editors, Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, pages
673-686. ACM, 2019. doi:10.1145/3297858.3304062.

ARM. mbed TLS, 2020. URL: https:///t1ls.mbed.org.
ARM. Security Advisories - Tech Updates - Mbed TLS, 2020. URL:

https://tls.mbed.org/tech-updates/security-advisories.

(3]
(4]

[5] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi,
and Francesco Regazzoni. Countermeasures against fault attacks
on software implemented AES: effectiveness and cost. In Pro-
ceedings of the 5th Workshop on Embedded Systems Security, WESS
2010, Scottsdale, AZ, USA, October 24, 2010, page 7. ACM, 2010.

doi:10.1145/1873548.1873555.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract).
In Walter Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, In-
ternational Conference on the Theory and Application of Cryptographic
Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, volume
1233 of Lecture Notes in Computer Science, pages 37-51. Springer,
1997. doi:10.1007/3-540-69053-0_4.

(6]

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In William Enck and Collin Mulliner,
editors, /1th USENIX Workshop on Offensive Technologies, WOOT
2017, Vancouver, BC, Canada, August 14-15, 2017. USENIX Associ-
ation, 2017. URL: https://www.usenix.org/conference/woot17/
workshop-program/presentation/brasser.

[7

—

[8

—_—

Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre
Seifert. One glitch to rule them all: Fault injection attacks against
amd’s secure encrypted virtualization. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
pages 2875-2889, 2021.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the
keys to the intel SGX kingdom with transient out-of-order ex-
ecution. In William Enck and Adrienne Porter Felt, editors,

[

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/3297858.3304062
https:///tls.mbed.org
https://tls.mbed.org/tech-updates/security-advisories
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1007/3-540-69053-0_4
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser

(10]

(1]

[12]

[13

[14]

[15]

[16]

(17]

[18]

[19]

[20]

27th USENIX Security Symposium, USENIX Security 2018, Balti-
more, MD, USA, August 15-17, 2018, pages 991-1008. USENIX
Association, 2018. URL: https://www.usenix.org/conference/
usenixsecurityl8/presentation/bulck.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical
attack framework for precise enclave execution control. In Proceedings
of the 2nd Workshop on System Software for Trusted Execution, Sys-
TEX@SOSP 2017, Shanghai, China, October 28, 2017, pages 4:1-4:6.
ACM, 2017. doi:10.1145/3152701.3152706.

Edward A Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Dou-
glas, William J Lambert, Kaladhar Radhakrishnan, and Michael J Hill.
Fivr—fully integrated voltage regulators on 4th generation intel®
core™ socs. In 2014 IEEE Applied Power Electronics Conference
and Exposition-APEC 2014, pages 432-439. IEEE, 2014.

Andrew Chambers. c-testsuite, 2020. URL: https://github.com/c-
testsuite/c-testsuite.

Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqgian Zhang.
Defeating speculative-execution attacks on SGX with hyperrace. In
2019 IEEE Conference on Dependable and Secure Computing, DSC
2019, Hangzhou, China, November 18-20, 2019, pages 1-8. IEEE, 2019.
doi:10.1109/DSC47296.2019.8937682.

Zhi Chen, Junjie Shen, Alex Nicolau, Alexander V. Veidenbaum,
Nahid Farhady Ghalaty, and Rosario Cammarota. CAMFAS: A com-
piler approach to mitigate fault attacks via enhanced simdization. In
2017 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2017, Taipei, Taiwan, September 25, 2017, pages 57-64. IEEE
Computer Society, 2017. doi:10.1109/FDTC.2017.10.

Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David
Oswald, and Flavio D. Garcia. Voltpillager: Hardware-based
fault injection attacks against intel SGX enclaves using the SVID
voltage scaling interface. In Michael Bailey and Rachel Green-
stadt, editors, 30th USENIX Security Symposium, USENIX Secu-
rity 2021, August 11-13, 2021, pages 699-716. USENIX As-
sociation, 2021. URL: https://www.usenix.org/conference/
usenixsecurity2l/presentation/chen-zitai.

Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryp-
tol. ePrint Arch., page 86,2016. URL: http://eprint.iacr.org/
2016/086.

Douglas Black. Intel & OEMs are disabling undervolting. Here’s how
to re-enable it, 2020. URL: https://www.ultrabookreview.com/
37095-dells-disabling-undervolting-on-their-laptops-
heres-how-to-re-enable-it/.

Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard.
Fault attacks on AES with faulty ciphertexts only. In Wieland Fischer
and Jorn-Marc Schmidt, editors, 2013 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20,
2013, pages 108-118. IEEE Computer Society, 2013. doi:10.1109/
FDTC.2013.18.

Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa M. 1. Taha, and
Patrick Schaumont. Differential fault intensity analysis. In Assia
Tria and Dooho Choi, editors, 2014 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2014, Busan, South Korea,
September 23, 2014, pages 49-58. IEEE Computer Society, 2014.
doi1:10.1109/FDTC.2014.15.

Christophe Giraud and Hugues Thiebeauld. A survey on fault at-
tacks. In Jean-Jacques Quisquater, Pierre Paradinas, Yves Deswarte,
and Anas Abou El Kalam, editors, Smart Card Research and Advanced
Applications VI, IFIP 18th World Computer Congress, TC§/WG8.8 &
TC11/WG11.2 Sixth International Conference on Smart Card Research
and Advanced Applications (CARDIS), 22-27 August 2004, Toulouse,
France, volume 153 of IFIP, pages 159—176. Kluwer/Springer, 2004.
doi:10.1007/1-4020-8147-2_11.

15

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvdn
Haller, and Manuel Costa. Strong and efficient cache side-channel
protection using hardware transactional memory. In Engin Kirda
and Thomas Ristenpart, editors, 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August
16-18, 2017, pages 217-233. USENIX Association, 2017. URL:
https://www.usenix.org/conference/usenixsecurityl7/
technical-sessions/presentation/gruss.

Hacker News. Plundervolt: Software-Based Fault Injection Attacks
Against Intel SGX, 2019. URL: https://news.yconbinator.com/
item?id=21759683.

Ludger Hemme. A differential fault attack against early rounds of
(triple-)des. In Marc Joye and Jean-Jacques Quisquater, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2004: 6th Inter-
national Workshop Cambridge, MA, USA, August 11-13, 2004. Pro-
ceedings, volume 3156 of Lecture Notes in Computer Science, pages
254-267. Springer, 2004. doi:10.1007/978-3-540-28632-5_109.

Intel. Intel Software Guard Extensions SDK for Linux OS Developer
Reference, May 2016. Rev 1.5.

Intel. Guidelines for Mitigating Timing Side Channels
Against Cryptographic Implementations, 2019. URL:
https://software.intel.com/security-software-guidance/
secure-coding/guidelines-mitigating-timing-side-
channels-against-cryptographic-implementations.

Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z, 2019.

Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide, 2019.

Intel. Intel SGX SDK Developer Reference for Windows* , 2020. URL:
https://software.intel.com/content/www/us/en/develop/
download/sgx-sdk-developer-reference-windows.html.

Intel. Unable to find alternatives to monotonic counter application
programming interfaces (apis) in intel software guard extensions (intel
sgx) for linux to prevent sealing rollback attacks, 2021. URL: https:
//www.intel.com/content /www/us/en/support/articles/
000057968 /software/intel-security-products.html.

Intel. What Technology Change Enables 1 Terabyte (TB)
Enclave Page Cache (EPC) size in 3rd Generation Intel
Xeon Scalable Processor Platforms?, 2021. URL: https:
//www.intel.com/content /www/us/en/support/articles/
000059614/software/intel-security-products.html.

Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and
Frank Mckeen. Intel software guard extensions: Epid provisioning and
attestation services, 2016.

Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. VOltpwn: Attacking x86 processor in-
tegrity from software. In Srdjan Capkun and Franziska Roes-
ner, editors, 29th USENIX Security Symposium, USENIX Secu-
rity 2020, August 12-14, 2020, pages 1445-1461. USENIX As-
sociation, 2020. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/kenjar.

Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study of
DRAM disturbance errors. In ACM/IEEE 41st International Sympo-
sium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA,
June 14-18, 2014, pages 361-372. IEEE Computer Society, 2014.
doi:10.1109/ISCA.2014.6853210.

Chris Lattner and Vikram S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In 2nd IEEE / ACM
International Symposium on Code Generation and Optimization (CGO
2004), 20-24 March 2004, San Jose, CA, USA, pages 75-88. IEEE
Computer Society, 2004. doi:10.1109/CG0.2004.1281665.

https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3152701.3152706
https://github.com/c-testsuite/c-testsuite
https://github.com/c-testsuite/c-testsuite
https://doi.org/10.1109/DSC47296.2019.8937682
https://doi.org/10.1109/FDTC.2017.10
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
http://eprint.iacr.org/2016/086
http://eprint.iacr.org/2016/086
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/
https://www.ultrabookreview.com/37095-dells-disabling-undervolting-on-their-laptops-heres-how-to-re-enable-it/
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1109/FDTC.2014.15
https://doi.org/10.1007/1-4020-8147-2_11
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://news.ycombinator.com/item?id=21759683
https://news.ycombinator.com/item?id=21759683
https://doi.org/10.1007/978-3-540-28632-5_19
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/content/www/us/en/develop/download/sgx-sdk-developer-reference-windows.html
https://software.intel.com/content/www/us/en/develop/download/sgx-sdk-developer-reference-windows.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar
https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/CGO.2004.1281665

[35] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak,
Yeseul Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and
Brent ByungHoon Kang. Hacking in darkness: Return-oriented
programming against secure enclaves. In Engin Kirda and
Thomas Ristenpart, editors, 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-
18, 2017, pages 523-539. USENIX Association, 2017. URL:
https://www.usenix.org/conference/usenixsecurityl?/
technical-sessions/presentation/lee-jaehyuk.

[36] Mengyuan Li, Yinqian Zhang, and Zhigiang Lin. Crossline: Breaking"

security-by-crash" based memory isolation in amd sev. In Proceedings

of the 2021 ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 2937-2950, 2021.

Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar,
David M. Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun.
ROTE: rollback protection for trusted execution. In Engin Kirda
and Thomas Ristenpart, editors, 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August
16-18, 2017, pages 1289-1306. USENIX Association, 2017. URL:
https://www.usenix.org/conference/usenixsecurityl7/
technical-sessions/presentation/matetic.

Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. Plundervolt: Software-based fault injection
attacks against intel SGX. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages
1466-1482. IEEE, 2020. doi:10.1109/5P40000.2020.00057.

Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen, and
Debdeep Mukhopadhyay. A biased fault attack on the time redundancy
countermeasure for AES. In Stefan Mangard and Axel Y. Poschmann,
editors, Constructive Side-Channel Analysis and Secure Design - 6th
International Workshop, COSADE 2015, Berlin, Germany, April 13-
14, 2015. Revised Selected Papers, volume 9064 of Lecture Notes in
Computer Science, pages 189-203. Springer, 2015. doi:10.1007/978~
3-319-21476-4_13.

Pengfei Qiu, Dongsheng Wang, Yongqgiang Lyu, and Gang Qu.
Voltjockey: Breaching trustzone by software-controlled voltage manip-
ulation over multi-core frequencies. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15, 2019, pages
195-209. ACM, 2019. doi:10.1145/3319535.3354201.

Pengfei Qiu, Dongsheng Wang, Yongqgiang Lyu, and Gang Qu.
Voltjockey: Breaking SGX by software-controlled voltage-induced
hardware faults. In Asian Hardware Oriented Security and Trust Sym-
posium, AsianHOST 2019, Xi’an, China, December 16-17, 2019, pages
1-6. IEEE, 2019. doi:10.1109/AsianH0ST47458.2019.9006701.

Raul Quinonez. SGXBENCH framework for benchmarking SGX
enclaves, 2018. URL: https://github.com/sgxbench/sgxbench.

[37]

(38]

[39]

[40]

[41

[42]

[43] Michael Schwarz and Daniel Gruss. How trusted execution environ-
ments fuel research on microarchitectural attacks. IEEE Secur. Priv.,

18(5):18-27, 2020. doi:10.1109/MSEC.2020.2993896.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-
privilege-boundary data sampling. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 753—
768. ACM, 2019. doi:10.1145/3319535.3354252.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks. In Michalis Polychronakis and Michael Meier, editors,
Detection of Intrusions and Malware, and Vulnerability Assessment -
14th International Conference, DIMVA 2017, Bonn, Germany, July 6-7,
2017, Proceedings, volume 10327 of Lecture Notes in Computer Sci-
ence, pages 3—24. Springer, 2017. doi:10.1007/978-3-319-60876~
1_1.

[t

[44

[45]

16

[46] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado.
T-SGX: eradicating controlled-channel attacks against enclave
programs. In 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017. The Internet Society, 2017.
URL: https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/t-sgx-eradicating-controlled-channel-
attacks-against-enclave-programs/.

[47] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal
war in memory. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 48-62. IEEE

Computer Society, 2013. doi:10.1109/SP.2013.13.

[48] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo.
CLKSCREW: exposing the perils of security-oblivious energy man-
agement. In Engin Kirda and Thomas Ristenpart, editors, 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver,
BC, Canada, August 16-18, 2017, pages 1057-1074. USENIX As-
sociation, 2017. URL: https://www.usenix.org/conference/

usenixsecurityl7/technical-sessions/presentation/tang.

utds3lab. Adaptation of nbench-byte-2.2.3 for Intel SGX, 2017. URL:
https://github.com/utds3lab/sgx-nbench.

[49]

[50] Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Riidiger Kapitza.
Asyncshock: Exploiting synchronisation bugs in intel SGX enclaves.
In Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas,
and Catherine A. Meadows, editors, Computer Security - ESORICS
2016 - 21st European Symposium on Research in Computer Security,
Heraklion, Greece, September 26-30, 2016, Proceedings, Part I, volume
9878 of Lecture Notes in Computer Science, pages 440-457. Springer,
2016. doi:10.1007/978-3-319-45744-4_22.

[51] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems.
In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 640-656. IEEE Computer Society,

2015. doi:10.1109/SP.2015.45.

Fan Zhang. mbedtls-SGX: a TLS stack in SGX, 2019. URL: https:
//github.com/bl4ck5un/mbedt1ls-SGX.

[52]

A Faulting Bits

Table | shows the analysis of which bit flips we observed
for the instructions. We recorded each bitflip, analyzed the
direction to which the bit flipped, and reported the overall
flip tendency of the faulty bits. We observe that logical vector
instructions have a high probability for stuck-at-zero bitflips.
Furthermore, we also found that some vector operations intro-
duce interesting faulting behavior, e.g., the vector comparison
instruction shows bitflip within a given element.

B Instruction Analysis

Table 2 shows the detailed first faulting points for all the
faulted instructions we found. We tested the faulted instruc-
tion across all our available CPUs with SGX support. We
compiled the faultable instruction with the trap instruction
to verify that the generated faults are indeed detectable with
a given trap instruction. We executed it with the reported
undervolting offset.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1007/978-3-319-21476-4_13
https://doi.org/10.1007/978-3-319-21476-4_13
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://github.com/sgxbench/sgxbench
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/t-sgx-eradicating-controlled-channel-attacks-against-enclave-programs/
https://doi.org/10.1109/SP.2013.13
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://github.com/utds3lab/sgx-nbench
https://doi.org/10.1007/978-3-319-45744-4_22
https://doi.org/10.1109/SP.2015.45
https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX

Table 1: The distinct faulted bit positions for each of our tested CPUs in mask form and the corresponding probability for each
bit to fault towards one. Note that all the outputs of the instructions are present in the mask, i.e., imul also contains the rflags
register. We see that parallel vector operations show only stuck-at-zero flips, where other instructions like multiplications show a
more random distribution.

Core i9-9900K Core i7-8700k Xeon E3-1505M Core i7-6700K (1)
Instruction Mask Py Mask Py Mask Py Mask Py
IMUL 0x00000000000000000000783£££000000 46.8% 0x00000000000000000000001£££800000 48.3% 0x00000000000000000££000£££c000000 48.7 % 0x000000000000000000000007£8000000 40.8%
AESENC 0x00000010000000000010000004188e04 50.7 % 0x0000000000000000000000000419804 49.4%
VANDN* 0x0000002002220080000000a208a80000 0.0% 0x10000050405455400000000000105¢00 0.0%
VAND* 0x0000002002020080000000a000000000 0.0% 0x00001010001455400000000500144400 0.0%
'VOR* 0x00020020022200820000002202ac0020 0.0% 0x00000010001414420000000000140e00 0.0%
VPCLMULQDQ 0x00000000000000000000000200000000 0.0% Ox3fdTEfTEEEEFFEfFEFfffffffffffbfe 51.1%
VPCMP* 0x0022aa82002000000000000000000000 0.0% OxfEfFEFFFO0000000fEEFFFFFFFFFrffe 332%
VPSRAD 0x0222a220000200000000000000000000 0.0%
VSQRTPD 0x0000000001f4Ff£££0000000000c3ffEf 52.6% 0x000c000000001df£0000000000001££f 47.0 %
VXOR* 0x00000020222a0080000000a20a800000 0.0% 0x10000050405455420000001500145e10 0.0%
VPMAX* OxEEFFFFEFEEErfeffefffffeffffffffe 50.2%
VPADDQ 0x00000101010001000000000000000000 73.3%

Table 2: The first faulting points for each of the susceptible instructions. We tested each instruction on each physical core across
multiple CPUs and frequency operating points. The numbers represent the set undervolting offset in units of —1 mV. The symbols
indicates with which type of trap can detect the fault (b imul, %% aesenc, [vorpd).

CPU Frequency Core Instructions
MHz IMUL AESENC VANDN* VAND* VOR* VXOR* VPCLMULQDQ VPSRAD VPMAX* VPCMP* VSQRTPD VPADDQ
Core 2000 0 O 244
19-9900K 2 0255 O255 O 255
4 O 255
5 O 250
6 @250
2500 0 0187 ©202 ©201 0197 ©197
1 0195 O 197
2 G196 ©197 ©210
5 O 197
6 197 G210
7 O 201
3000 0 0154 0165 G165 O170 O165 O 163 O 172
1 G160 O159 O172 G200 G165 O 166 O 167
2 0160 O165 O180 O174 ©169 O 172 O 185
3 170 0172 0177 O172 G171 G180
4 0163 O173 0177 ©202 O171 O175 O 179
5 G164 0165 O175 0199 O 176
6 G158 O176 ©210 o177
7 G165 0172 O 182 © 209
3500 0 G156 0160 O167 G166 162 O 159 O 167 G175 O 166
1 0161 O152 O166 O166 156 O 167 O 161
2 O 159 H 156 G200 O178 ©165 O 174 O 180 G180 O 172
3 0162 O169 O 172 O 170 O 173 O 167 O 174 O 175
4 0155 0165 0177 0180 O172 O 204 O 185 O 167
5 0162 0165 O180 ©207 ©172 ©204 O 174
6 O 154 O 164 o177 0215 O175 O 180 O 176
7 G161 O 166 O 180 O 176 O 179
4000 0 o161 O161 180 ©170 ©170 O 168 O 175 O 166
1 O 167 ¢ 155 G200 O169 O 195 Yo 155
2 @163 ¥ 163 175 195 O 162
3 0166 O 170 <190 O 166
4 G160 O 163 O 161
5 O 175 O 166 O 169
6 G162 O 166 O 165 O 168
7 0164 O 194 O 175
Core 1500 0 0264 O2064
i7-8700k 1 0262
2000 0 @230 ©230 G245 0240 0241 242
1 O 227 O 242 O 250
2 O 242

17

Table 2: The first faulting points for each of the susceptible instructions. We tested each instruction on each physical core across
multiple CPUs and frequency operating points. The numbers represent the set undervolting offset in units of —1 mV. The symbols
indicates with which type of trap can detect the fault (O imul, %% aesenc, []vorpd).

CPU Frequency Core Instructions
MHz IMUL AESENC VANDN* VAND* VOR* VXOR* VPCLMULQDQ VPSRAD VPMAX* VPCMP* VSQRTPD VPADDQ
5 250
2500 0 G204 ©207 @235 ©230 0237 O214 G230 ©225 0223 0227
1 O 200 0232 0229 ©234 O215
2 O 214 G241 © 240
5 0221
3000 0 G194 O189 ©227 ©230 ©222 ©223 G195
1 G193 ©222 ©220 ©O220 G215 < 195
2 G214 0220 G235 ©224 0230
3 0223 ©225 O 235 O 224
5 G214
3500 0 @209 O187 ©230 0225 ©228 ©208 O 229
1 G190 O 221 0222 ©223 ©202 O 230
2 ©223 0220 O 240
3 O 245 O 245
5 O 244
3700 0 @202 ©O192 0225 ©229 G215 ©226
1 O 185 ©220 O 218 <198 O 235 O 220
2 G217 ©230
3 O 214 O 240
5 244
Xeon 800 0 O 277
E3-1505M 1 O 282
1500 0 202 0222 0221 O219 0220
1 0212 0210 ©213 ©210 211
2 215 0217 0217 ©209 [1209
3 208 0212 ©215 0209 [1209
2000 0 O 190 G209 ©O211 ©208 ©207
1 O 200 ©200 ©200 [1195 O 195
2 © 205 © 208 ©207 [1203 ©205
3 197 ©200 ©201 [1195 [1195
2500 0 O 160 O 175 O 175
1 159 160
2 O 165 O 170
3 O 160 O 169 7150 160
3000 0 O 172
1 1154 [1155
2 O 165
3 G173 1160 O 159
3290 3 1158
3300 0 O 175
1 [1148 O 154
2 O 160
3 O 170 O 165 1156 O 160
Core 2000 2 O 249
i7-6700K (1) 3 241
2500 3 242
Core No Faults Found

i7-6700K (2)

18

A Artifact Appendix

A.1 Abstract

Minefield is a probabilistic undervolting protection for SGX
enclaves implemented via a compiler extension. The general
idea is to place instructions highly susceptible to undervolting
faults between regular instructions. In the artifact evaluation,
we include all the tools needed to reproduce each result of
the paper to follow the conclusion of our mitigation. First, we
provide the instruction finding framework that automatically
scans the x86 instruction set for instructions susceptible to
undervolting faults. Second, we show a benchmark for the
minimal time between voltage transitions. Third, we include
the compiler infrastructure to automatically generate hardened
enclaves and the required modifications to the SGX-SDK. Fi-
nally, we provide the tools to reproduce the performance, size,
compile-time, and detection rate benchmarks of Minefield.
Due to the nature of the paper, we require Intel hardware that
supports SGX and a runtime environment where possible data
corruption is acceptable. We recommend a clean installation
of Ubuntu 20.04, with Intel CPUs between the 6" and 10"
generation. Furthermore, if applicable, undervolting faults
will lead to repeated system freezes during the profiling phase.
Therefore, an automatic way to restart the system would be
beneficial.

A.2 Artifact check-list (meta-information)

* Program: The used programs are provided, or how to
install them is described.

* Compilation: We require a modified Clang 11 compiler.
Download and build scripts are provided.

» Transformations: We provide the patches used to allow
compilation of the SGX-SDK with Clang.

* Data set: We provide the framework to use the https:
//uops.info x86 instruction-set list.

* Run-time environment: Requires a native Linux instal-
lation that supports SGX, and we strongly recommend
Ubuntu 20.04. The provided installation scripts require
internet access.

* Hardware: Intel CPUs with SGX support between
the 6 and 10" generation and MSR 0x150 available.
Undervolting-based faults are highly dependent on the ac-
tual hardware and even differ between cores on the same
CPU. We recommend one of the CPUs of the paper.

* Execution: For executing the benchmarks, we require a
stable frequency, isolated cores, a modified grub command
line, and software-based undervolting.

19

¢ Security, privacy, and ethical concerns: Due to the
undervolting data-corruption can occur on the used sys-
tem.

e Metrics: The benchmarks report performance in itera-
tions per second, faulting points in mV, execution time in
seconds, code size in bytes, and detection rate factors.

e Output: The resulting outputs are CSV files. We provide
visualization scripts where possible.

* Experiments: We include installation scripts and
readmes describing the process and how to execute the
benchmarks.

* How much disk space required (approximately)?: 4-5
GB

¢ How much time is needed to prepare workflow (ap-
proximately)?: 3-4 hours

* How much time is needed to complete experiments
(approximately)?: 1-5 days depending on the depth of

the analysis.

* Publicly available (explicitly provide evolving version
reference)?: https://github.com/iaik/minefield

¢ Code licenses (if publicly available)?: MIT

Archived (explicitly provide DOI or stable ref-
erence)?: https://github.com/iaik/minefield/
tree/ae

A.3 Description
A.3.1 How to access

Check out the Git repository from https://github.com/
iaik/minefield and follow the provided readmes.

A.3.2 Hardware dependencies

We require Intel CPUs which support SGX and have an avail-
able software undervolting interface (MSR 0x150) available.
We recommend CPUs between the 6" and 10" generation
and recommend a desktop CPU shown in the paper. Our ex-
perience showed that the susceptibility to undervolting faults
is highly dependent on the used hardware and even differs
across cores from the same CPU. We recommend a system
with physical access as undervolting faults will repeatedly
crash the system and lead to system freezes.

https://uops.info
https://uops.info
https://github.com/iaik/minefield
https://github.com/iaik/minefield/tree/ae
https://github.com/iaik/minefield/tree/ae
https://github.com/iaik/minefield
https://github.com/iaik/minefield

A.3.3 Software dependencies

We strongly recommend Ubuntu 20.04 as it has official sup-
port for SGX, and we tested all the provided tools there.
The components of the paper have to be built from source,
hence the systems requires tools for compiling software
(build-essentials on Ubuntu). Access to MSRs via the
msr-tools interface is also necessary. Finally, we require a
setup that allows frequency pinning via cpupower to fix the
frequency at a given operating point during the undervolt.

A.3.4 Data sets

To speed up the finding of the susceptible instructions, we
provide our found faultable instruction data set in the reposi-
tory. Furthermore, we rely on the complete x86 instruction set
list from https://uops.info, which is automatically used
in the framework.

A.3.5 Models
N/A

A.3.6 Security, privacy, and ethical concerns

During our experiments with undervolting, we observed data
corruption in recently used files. Therefore, we highly rec-
ommend a fresh installation with an operating system image
not used for personal or important data. We never observed
persistent damage on the hardware used for undervolting.
However, we cannot ensure that this is generally the case, but
we find it highly unlikely to damage the used hardware.

A.4 Installation

Follow the readmes in the top-level directory, which will guide
you through installing all the necessary tools and components
of the paper. The installation scripts are written in bash and
should automate most of the process. However, we cannot
rule out that some parts might need manual adjusting, and
therefore, knowledge of C, C++, python3, bash, and Makefiles
is beneficial. Furthermore, due to the enormous complexity
of SGX, some packages might need manual installation if not
found correctly.

A.5 Experiment workflow

After building the components for the benchmarks, they can
be executed via scripts for a given placement density. These
scripts should be executed with a fixed frequency to allow
a fair comparison between the runs. The benchmark results
are exported in the CSV format, and we provide additional
scripts to convert the measurements into relative overhead
percentages with respect to the baseline.

20

A.6 Evaluation and expected results

The reproduced results from Table 1 and Table 2 should show
that imul is, across multiple CPUs, the instruction most sus-
ceptible to faults. Some concrete instances might require
extended instructions to detect the fault at the highest under-
volting point correctly. With this assumption, the compiler
extension can rely on imul as trap instruction.

For the performance results, we should see a nearly lin-
ear performance decrease (Figure 8) and a rising code size
(Figure 10) when increasing the placement density. Some
benchmarks are more affected by the placement density than
others. For the mbedTLS (Figure 9) benchmark, some config-
urations with different key lengths and disabled redundancy
checks in the library itself show better performance as the
baseline depending on the number of leading zeros in the key.
The compile-time (Figure 11) should also rise with increas-
ing placement density. However, the absolute time increase
should be minimal.

Finally, we provide test enclaves to test the detection rate
of the mitigation (Figure 6) in the worst-case scenario and a
more realistic scenario when protecting mbedTLS (Figure 7).

A.7 Experiment customization

Since the undervolting offset is highly dependent on the hard-
ware and even the core executing the code, some benchmarks
might need manual adjustment. The instruction finding frame-
work automatically detects system freezes when using our
remote system with a remote power switch. The overall run-
time of the performance benchmark can be adapted via the
number of runs.

A.8 Notes

Undervolting faults are highly dependent on the used systems.
Even our two identical systems from Table 2 show different
faulting behavior. Furthermore, we observed different under-
volting offsets on cores of the same CPU. Therefore it is likely
that the undervolting-related results from the artifacts differ.

A.9 Version

Based on the LaTeX template for Artifact Evaluation
V20220119.

https://uops.info

	Introduction
	Background
	Intel SGX
	Power Management (DVFS)

	Attacker Model
	High-Level Overview of Minefield
	Research Questions

	Analysis of Research Questions
	RQ1: Instruction Susceptibility to Faults
	RQ2: Fault-Injection Capabilities
	RQ3: Handling Faults
	Results

	Implementation of Minefield
	Compiler Extension
	Runtime Fault Handling
	Monitoring Controlled-Channel Attacks

	Toolchain Integration

	Evaluation
	Security
	Highly-susceptible Toy Victim
	Real-world Victim
	Results

	Performance of Minefield
	Runtime Evaluation
	Code-Size Evaluation
	Compile-Time Evaluation

	Correctness of Minefield

	Discussion and Limitations
	Conclusion
	Faulting Bits
	Instruction Analysis
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

